Inside the C++ Object Model 读书笔记(四)

本文是《Inside the C++ Object Model》第四章的读书笔记,探讨了成员函数的各种调用方式,包括隐式this指针、名称修饰、虚函数、静态成员函数。详细介绍了虚函数表在多继承和虚继承下的实现,以及函数效率、指针到成员函数和内联函数的原理。

Chapter 4 The Semantics of Function

4.1 Varieties of Member Invocation

One C++ design criterion is that a nonstatic member function at a minimum must be as efficient as its analogous nonmember function.

Steps in the transformation of a member function:

  1. Rewrite the signature to insert an additional argument to the member function that provides access to the invoking class object. This is called the implicit this pointer:
// non-const nonstatic member augmentation 
Point3d 
Point3d::magnitude( Point3d *const this ) 
If the member function is const, the signature becomes

// const nonstatic member augmentation 
Point3d 
Point3d::magnitude( const Point3d *const this ) 
  1. Rewrite each direct access of a nonstatic data member of the class to access the member through the this pointer:
{ 
   return sqrt( 
     this->_x * this->_x + 
     this->_y * this->_y + 
     this->_z * this->_z ); 
}
  1. Rewrite the member function into an external function, mangling its name so that it’s lexically unique within the program:
extern magnitude__7Point3dFv( 
   register Point3d *const this ); 
Name Mangling

In general, member names are made unique by concatenating the name of the member with that of the class. For example, given the declaration

class Bar { public: int ival; ... }; 
ival becomes something like

// a possible member name-mangling 
ival__3Bar 


class Foo : public Bar { public: int ival; ... }; 

// Pseudo C++ Code 
// internal representation of Foo 
class Foo { public: 
   int ival__3Bar; 
   int ival__3Foo; 
   ... 
}; 

Member functions because they can be overloaded, require a more extensive mangling to provide each with a unique name.

Virtual Member Functions

ptr->normalize(); 

//transformed into
( * ptr->vptr[ 1 ])( ptr ); 

The invocation of a virtual function through a class object should always be resolved by your compiler as an ordinary nonstatic member function:

// Point3d obj; 
obj.normalize(); 

for the compiler to transform it internally into

// unnecessary internal transformation! 
( * obj.vptr[ 1 ])( &obj ); 

normalize__7Point3dFv( &obj );

Static Member Functions

&Point3d::object_count(); 
yields a value of type

unsigned int (*)(); 
not of type

unsigned int ( Point3d::* )(); 

4.2 Virtual Member Functions

Each table holds the addresses of all the virtual function instances “active” for objects of the table’s associated class. These active functions consist of the following:

  1. An instance defined within the class, thus overriding a possible base class instance

  2. An instance inherited from the base class, should the derived class choose not to override it

  3. A pure_virtual_called() library instance that serves as both a placeholder for a pure virtual function and a runtime exception should the instance somehow be invoked

image

Multiple Inheritance
class Base1 { 
public: 
   Base1(); 
   virtual ~Base1(); 
   virtual void speakClearly(); 
   virtual Base1 *clone() const; 
protected: 
   float data_Base1; 
}; 

class Base2 { 
public: 
   Base2(); 
   virtual ~Base2(); 
   virtual void mumble(); 
   virtual Base2 *clone() const; 
protected: 
   float data_Base2; 
}; 

class Derived : public Base1, public Base2 { 
public: 
   Derived(); 
   virtual ~Derived(); 
   virtual Derived *clone() const; 
protected: 
   float data_Derived; 
}; 

transformation to support second base class

Base2 *pbase2 = new Derived; 
//transform to
Derived *temp = new Derived; 
Base2 *pbase2 = temp ? temp + sizeof( Base1 ) : 0; 

The Derived class object contains a vptr for each associated virtual table. (This is shown in Figure 4.2.) The vptrs are initialized within the constructor(s) through code generated by the compiler.

image

The traditional approach to supporting multiple virtual tables associated with a class is to generate each as an external object with a unique name. For example, the two tables associated with Derived are likely to be named

vtbl__Derived; // the primary table 
vtbl__Base2__Derived; // the secondary table 

With the advent of runtime linkers in support of dynamic shared libraries, the linking of symbolic names can be extremely slow—up to 1 ms per name, for example, on a SparcStation 10. To better accommodate the performance of the runtime linker, the Sun compiler concatenates the multi-ple virtual tables into one. The pointers to the secondary virtual tables are generated by adding an offset to the name of the primary table. Under this strategy, each class has only one named virtual table. "For code used on a number of Sun projects [the speedup] was quite noticeable."

Virtual Functions under Virtual Inheritance

class Point2d { 
public: 
   Point2d( float = 0.0, float = 0.0 ); 
   virtual ~Point2d(); 

   virtual void mumble(); 
   virtual float z(); 
   // ... 
protected: 
   float _x, _y; 
}; 

class Point3d : public virtual Point2d 
public: 
   Point3d( float = 0.0, float = 0.0, float = 0.0 ); 
   ~Point3d(); 

   float z(); 
protected: 
   float _z; 
}; 

the Point2d and Point3d objects are no longer coincident, conversion between the two also requires a this pointer adjustment.

image

4.3 Function Efficiency

4.4 Pointer-to-Member Functions

the syntax of declaring a pointer-to-member function is

double          // return type 
( Point::*            // class the function is member 
  pmf )         // name of pointer to member 
();             // argument list 

//Thus one writes
double (Point::*coord)() = &Point::x; 
Supporting Pointer-to-Virtual-Member Functions

That is, taking the address of a virtual member function yields its index into its class’s associated virtual table.

( * ptr->vptr[ (int)pmf ])( ptr );  //pmf point to virtual function

Pointer-to-Member Functions under MI

For pointers to members to support both multiple and virtual inheritances, Stroustrup designed the following aggregate structure (see [LIPP88] for the original presentation):

// fully general structure to support 
// pointer to member functions under MI 
struct __mptr { 
   int delta; 
   int index; 
   union { 
      ptrtofunc  faddr; 
      int        v_offset; 
   }; 
}; 

The index and faddr members, respectively, hold either the virtual table index or the nonvirtual member function address. (By convention, index is set to –1 if it does not index into the virtual table.) Under this model, an invocation such as

( ptr->*pmf )() 
//becomes

( pmf.index < 0 ) 
   ? // non-virtual invocation 
   ( *pmf.faddr )( ptr ) 

   : // virtual invocation 
   ( * ptr->vptr[ pmf.index ]( ptr ); 

4.5 Inline Functions

In practice, however, we cannot force the inlining of any particular function,For the request to be honored, the compiler must believe it can “reasonably” expand the function in an arbitrary expression.

In general, there are two phases to the handling of an inline function:

  1. The analysis of the function definition to determine the “intrinsic inline-ability” of the function (intrinsic in this context means unique to an implementation).
  2. The actual inline expansion of the function at a point of call. This involves argument evaluation and management of temporaries.
内容概要:本文设计了一种基于PLC的全自动洗衣机控制系统内容概要:本文设计了一种,采用三菱FX基于PLC的全自动洗衣机控制系统,采用3U-32MT型PLC作为三菱FX3U核心控制器,替代传统继-32MT电器控制方式,提升了型PLC作为系统的稳定性与自动化核心控制器,替代水平。系统具备传统继电器控制方式高/低水,实现洗衣机工作位选择、柔和过程的自动化控制/标准洗衣模式切换。系统具备高、暂停加衣、低水位选择、手动脱水及和柔和、标准两种蜂鸣提示等功能洗衣模式,支持,通过GX Works2软件编写梯形图程序,实现进洗衣过程中暂停添加水、洗涤、排水衣物,并增加了手动脱水功能和、脱水等工序蜂鸣器提示的自动循环控制功能,提升了使用的,并引入MCGS组便捷性与灵活性态软件实现人机交互界面监控。控制系统通过GX。硬件设计包括 Works2软件进行主电路、PLC接梯形图编程线与关键元,完成了启动、进水器件选型,软件、正反转洗涤部分完成I/O分配、排水、脱、逻辑流程规划水等工序的逻辑及各功能模块梯设计,并实现了大形图编程。循环与小循环的嵌; 适合人群:自动化套控制流程。此外、电气工程及相关,还利用MCGS组态软件构建专业本科学生,具备PL了人机交互C基础知识和梯界面,实现对洗衣机形图编程能力的运行状态的监控与操作。整体设计涵盖了初级工程技术人员。硬件选型、; 使用场景及目标:I/O分配、电路接线、程序逻辑设计及组①掌握PLC在态监控等多个方面家电自动化控制中的应用方法;②学习,体现了PLC在工业自动化控制中的高效全自动洗衣机控制系统的性与可靠性。;软硬件设计流程 适合人群:电气;③实践工程、自动化及相关MCGS组态软件与PLC的专业的本科生、初级通信与联调工程技术人员以及从事;④完成PLC控制系统开发毕业设计或工业的学习者;具备控制类项目开发参考一定PLC基础知识。; 阅读和梯形图建议:建议结合三菱编程能力的人员GX Works2仿真更为适宜。; 使用场景及目标:①应用于环境与MCGS组态平台进行程序高校毕业设计或调试与运行验证课程项目,帮助学生掌握PLC控制系统的设计,重点关注I/O分配逻辑、梯形图与实现方法;②为工业自动化领域互锁机制及循环控制结构的设计中类似家电控制系统的开发提供参考方案;③思路,深入理解PL通过实际案例理解C在实际工程项目PLC在电机中的应用全过程。控制、时间循环、互锁保护、手动干预等方面的应用逻辑。; 阅读建议:建议结合三菱GX Works2编程软件和MCGS组态软件同步实践,重点理解梯形图程序中各环节的时序逻辑与互锁机制,关注I/O分配与硬件接线的对应关系,并尝试在仿真环境中调试程序以加深对全自动洗衣机控制流程的理解。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值