【NO.52】LeetCode HOT 100—146. LRU 缓存

本文详细描述了如何设计并实现一个满足LRU缓存约束的数据结构,利用排序(如双链表)维护最近最少使用的规则,并结合哈希表以O(1)的时间复杂度执行get和put操作。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

146. LRU 缓存

146. LRU 缓存

请你设计并实现一个满足 LRU (最近最少使用) 缓存 约束的数据结构。
实现 LRUCache 类:

  • LRUCache(int capacity) 以 正整数 作为容量 capacity 初始化 LRU 缓存
  • int get(int key) 如果关键字 key 存在于缓存中,则返回关键字的值,否则返回 -1 。
  • void put(int key, int value) 如果关键字 key 已经存在,则变更其数据值 value ;如果不存在,则向缓存中插入该组 key-value 。如果插入操作导致关键字数量超过 capacity ,则应该 逐出 最久未使用的关键字。
  • 函数 get 和 put 必须以 O(1) 的平均时间复杂度运行。

示例:

输入
[“LRUCache”, “put”, “put”, “get”, “put”, “get”, “put”, “get”, “get”, “get”]
[[2], [1, 1], [2, 2], [1], [3, 3], [2], [4, 4], [1], [3], [4]]
输出
[null, null, null, 1, null, -1, null, -1, 3, 4]

解释
LRUCache lRUCache = new LRUCache(2);
lRUCache.put(1, 1); // 缓存是 {1=1}
lRUCache.put(2, 2); // 缓存是 {1=1, 2=2}
lRUCache.get(1); // 返回 1
lRUCache.put(3, 3); // 该操作会使得关键字 2 作废,缓存是 {1=1, 3=3}
lRUCache.get(2); // 返回 -1 (未找到)
lRUCache.put(4, 4); // 该操作会使得关键字 1 作废,缓存是 {4=4, 3=3}
lRUCache.get(1); // 返回 -1 (未找到)
lRUCache.get(3); // 返回 3
lRUCache.get(4); // 返回 4

提示:

1 <= capacity <= 3000
0 <= key <= 10000
0 <= value <= 10^5
最多调用 2 * 10^5 次 get 和 put

解题

方法:排序+哈希表

public class LRUCache {
   
    // LRU(最近最少使用)刚put或者get的在最前面,可以理解为创建,更新时间倒序
    // 删除的是最后的节点(最久未使用)
    // 排序+哈希表: 双向链表+哈希表,自己手写双向链表,借用HashMap
    // 双向链表维护节点的前后关系。头节点是最近使用的,尾节点是最久未使用的
    // 哈希表的存在是为了提高时间复杂度,用空间换时间

    // 链表节点
    class DLinkedNode{
   
        int key;
        int value;
        DLinkedNode prev;
        DLinkedNode next;
        // 无参、有参构造
        public DLinkedNode () {
   }
        public DLinkedNode (int ke
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

悬浮海

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值