Funny Function
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 0 Accepted Submission(s): 0
Problem Description
Function
Fx,y
satisfies:
For given integers N and M,calculate Fm,1 modulo 1e9+7.

For given integers N and M,calculate Fm,1 modulo 1e9+7.
Input
There is one integer T in the first line.
The next T lines,each line includes two integers N and M .
1<=T<=10000,1<=N,M<2^63.
The next T lines,each line includes two integers N and M .
1<=T<=10000,1<=N,M<2^63.
Output
For each given N and M,print the answer in a single line.
Sample Input
2 2 2 3 3
Sample Output
233
题目大意:给你n,m,求f(m,1)
![]()
![]()
由矩阵快速幂解决。
ac代码:
// F(m,1)=(2*k1^(m-1)+(1+(-1)^(m+1))/2)/3 其中k1=(2^n-1); #include <iostream> #include <iostream> #include <algorithm> #include <stdio.h> using namespace std; const long long mod = 1e9+7; long long f(long long x,long long k) { if (k==0) return 1; if (k&1) { return f(x,k-1)*x%mod; }else { long long t=f(x,k/2); return t*t%mod; } } void exgcd(long long a,long long b,long long &x,long long &y) { if (!b) { x=1;y=0; return; } exgcd(b,a%b,y,x); y-=x*(a/b); } long long x,y; int main() { int T; exgcd(3,mod,x,y); x=(x+mod)%mod; long long n3=x; scanf("%d",&T); while (T--) { long long n,m; scanf("%I64d%I64d",&n,&m); long long k1=(f(2,n)-1+mod)%mod; long long tmp1=2*f(k1,m-1)%mod; if (n&1) { printf("%I64d\n",(tmp1+1+mod)%mod*n3%mod); }else printf("%I64d\n",tmp1*n3%mod); } }
题目链接: 点击打开链接http://acm.hdu.edu.cn/showproblem.php?pid=6050