yolov3算法

部署运行你感兴趣的模型镜像

1 Darknet-53

在YOLOv2版本时,其主干网络是一个Darknet-19网络,到了YOLOv3版本,主干网络进化为了Darknet-53网络,网络层数更多,同时也引进了更加先进的Resnet残差网络。与Darknet-19网络相比,Darknet-53网络在处理大量图片时整体效率上有所不如,但是准去率上确提高了很多,且经证明,

2. 特征金字塔(Feature Pyramid Netword, FPN)

在相同准确率下,Darknet-53速度却要由于Darknet-19。
进行目标检测时,一副图像与可能存在多个物体,物体有大有小,所以目标检测模型必须要有检测不同大小物体的能力。而在实际卷积神经网络各层输出的特征图中,不同深度的卷积层所检测到的特征是有区别的,浅层网络的输出的特征图经过的卷积操作少,保留较多的小尺寸细节信息,例如物体颜色、位置、边缘等,信息更加低级、具体,随着网络深度的加深,输出的特征图经过了更多层卷积操作,包含了更广视野范围的图像信息,特征图所提取的信息变得抽象,例如物体的语义信息(物体的类别特征:猫、狗、汽车等)

3 输出结果解析

从上图中可以到,虚线框内的Darknet-53网络对右侧网络有3个输出,最底下的输出是13×13×1024的特征图,这一输出经过最多层卷积操作,包含更高级、更抽象、视野范围更大的特征,适合尺寸较大的目标检测,在右侧网络中,这一特征图再次经过卷积的特征图先两个方向传递,一个是再次经过3×3和1×1的卷积后输出13×13×75的特征图用于目标检测,另一个是进行上采样改变特征图大小后与Darknet-53网络的第二个输出特征图进行堆叠组成新的特征图,这个新的特征图再次进行卷积,也同样进行两个方向的传递,其中一个方向最终输出26×26×75的特征图用于目标检测中,另一个方向的是进行上采样转变尺寸后与Darknet-53网络第一个输出的特征图进行堆叠后形成新的特征图进行特征提取,最终输出52×52×75的特征图,这一特征图包含了浅层网络提取的特征图对小尺寸目标检测更有一定提升。

在上述过程中,两次用到上采样和特征堆叠,其中上采用是将小尺寸特征图通过插值等方法,生成大尺寸图像。例如使用最近邻插值算法,将88的图像变换为1616,注意,上采样层不改变特征图的通道数。而特征堆叠是指的是concat操作,源于DenseNet网络的设计思路,将特征图按照通道维度直接进行拼接,例如8816的特征图与8816的特征图拼接后生成8832的特征图。

总结而言,经过上述主干网络后,将输出以下三种不同大小的特征图:

13×13×75

26×26×75

52×52×75

您可能感兴趣的与本文相关的镜像

Yolo-v5

Yolo-v5

Yolo

YOLO(You Only Look Once)是一种流行的物体检测和图像分割模型,由华盛顿大学的Joseph Redmon 和Ali Farhadi 开发。 YOLO 于2015 年推出,因其高速和高精度而广受欢迎

YOLOv3是一种物体检测算法,它在2018年由Joseph Redmon等人发布。该算法通过单个神经网络将整个图像作为输入,并直接输出每个物体的边界框和类别。相比于传统的物体检测算法,如基于区域的CNN(R-CNN)和Fast R-CNN等,YOLOv3具有更高的检测速度和更好的精度。 下面是YOLOv3算法框架的详细介绍: 1. 输入层 YOLOv3的输入层接受图像作为输入,并将其分割成S x S个网格。每个网格都会预测B个边界框,每个边界框包含5个坐标值(x, y, w, h, confidence)和C个类别概率。 2. 卷积层 接下来是一系列的卷积层,用于提取图像特征。YOLOv3使用了一种称为Darknet-53的卷积神经网络,它由53层卷积组成。这些卷积层使用了一些新的技术,如残差连接和上采样层,以获得更好的性能。 3. 检测层 检测层是YOLOv3的核心层,它将卷积层的输出转换成物体检测结果。每个检测层都会预测一组边界框,并计算每个边界框属于每个类别的概率。在这里,YOLOv3使用了一个新的技术,称为多尺度预测(multi-scale predictions),它可以在不同的尺度下进行检测,以提高检测精度。 4. 非极大值抑制(NMS) 由于每个物体可能被多个边界框检测到,因此需要使用非极大值抑制(NMS)算法来去除重复的检测结果。NMS算法会计算每个边界框与其他边界框的重叠程度,然后去除重叠程度大于一定阈值的边界框。 5. 输出层 最后,YOLOv3的输出层将检测结果转换成人类可读的格式。输出层会将每个边界框的坐标转换成图像坐标,并输出每个物体的类别和置信度。 总结一下,YOLOv3算法框架的核心是检测层,它使用了多尺度预测技术和NMS算法来提高检测精度。此外,YOLOv3还使用了一些新的技术,如Darknet-53卷积网络和上采样层,以获得更好的性能。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值