21、最优跳频序列与快速代数攻击相关研究

最优跳频序列与快速代数攻击相关研究

1. 基于幂剩余理论的最优跳频序列

在跳频序列研究中,基于幂剩余理论构建的跳频序列集有着独特的性质。下面我们来详细探讨不同幂次的剩余跳频序列集。
- 3 次幂剩余跳频序列集 C(7, 3)
- 根据定理 2,3 次幂剩余跳频序列集 C(7, 3) 是最优平均汉明相关族。该序列集的参数如下:
|参数|值|
| ---- | ---- |
|q|7|
|L|7|
|M|6|
|Ha|2|
|Hc|3|
- 通过将这些参数代入公式 (L - 1)qHa + (M - 1)LqHc 和 (LM - q)L 进行计算:
[
\begin{align }
(L - 1)qHa + (M - 1)LqHc&= (7 - 1)×7×2 + (6 - 1)×7×7×3\
&= 84 + 735\
&= 624
\end{align
}
]
[
(LM - q)L = (6×7 - 7)×7 = 245
]
- 由于 624 > 245,所以该序列集不是最优最大汉明相关族。
- 4 次幂剩余跳频序列集 C(7, 4)
- 同样依据定理 2,4 次幂剩余跳频序列集 C(7, 4) 是最优平均汉明相关族。其参数为:
|参数|值|
| ---- | ---- |
|q|7|
|L|7|
|M|6|

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值