Given n non-negative integers representing the histogram's bar height where the width of each bar is 1, find the area of largest rectangle in the histogram.
Above is a histogram where width of each bar is 1, given height =[2,1,5,6,2,3]
.
The largest rectangle is shown in the shaded area, which has area =10
unit.
For example,
Given height = [2,1,5,6,2,3]
,
return 10
.
转载自http://blog.youkuaiyun.com/abcbc/article/details/8943485
此解法的核心思想为:一次性计算连续递增的区间的最大面积,并且考虑完成这个区间之后,考虑其前、后区间的时候,不会受到任何影响。也就是这个连续递增区间的最小高度大于等于其前、后区间。
这个方法非常巧妙,最好通过一个图来理解:
假设输入直方图为:int[] height = {2,7,5,6,4}.
这个方法运行的时候,当遇到height[2] == 5的时候,发现其比之前一个高度小,则从当前值(5)开始,向左搜索比当前值小的值。当搜索到最左边(2)时,比5小,此时计算在height[0]和height[2]之间的最大面积,注意不包括height[0]和和height[2]。height[1]以红色标出的这个区域就被计算完成。同样的方法,计算出绿色和粉色的面积。
因此这个方法需要使用两个栈。第一个栈为高度栈heightStack,用于记录还没有被计算过的连续递增的序列的值。第二个栈为下标栈indexStack,用于记录高度栈中对应的每一个高度的下标,以计算宽度。
算法具体执行的步骤为:
若heightStack为空或者当前高度大于heightStack栈顶,则当前高度和当前下标分别入站。所以heightStack记录了一个连续递增的序列。
若当前高度小于heightStack栈顶,heightStack和indexStack出栈,直到当前高度大于等于heightStack栈顶。出栈时,同时计算区间所形成的最大面积。注意计算完之后,当前值入栈的时候,其对应的下标应该为最后一个从indexStack出栈的下标。比如height[2]入栈时,其对应下标入栈应该为1,而不是其本身的下标2。如果将其本身下标2入栈,则计算绿色区域的最大面积时,会忽略掉红色区域。
public class Solution {
// O(n) using two stacks
public int largestRectangleArea(int[] height) {
// Start typing your Java solution below
// DO NOT write main() function
int area = 0;
java.util.Stack<Integer> heightStack = new java.util.Stack<Integer>();
java.util.Stack<Integer> indexStack = new java.util.Stack<Integer>();
for (int i = 0; i < height.length; i++) {
if (heightStack.empty() || heightStack.peek() <= height[i]) {
heightStack.push(height[i]);
indexStack.push(i);
} else if (heightStack.peek() > height[i]) {
int j = 0;
while (!heightStack.empty() && heightStack.peek() > height[i]) {
j = indexStack.pop();
int currArea = (i - j) * heightStack.pop();
if (currArea > area) {
area = currArea;
}
}
heightStack.push(height[i]);
indexStack.push(j);
}
}
while (!heightStack.empty()) {
int currArea = (height.length - indexStack.pop())
* heightStack.pop();
if (currArea > area) {
area = currArea;
}
}
return area;
}
}
在网上发现另外一个使用一个栈的O(n)解法,代码非常简洁,栈内存储的是高度递增的下标。对于每一个直方图高度,分两种情况。1:当栈空或者当前高度大于栈顶下标所指示的高度时,当前下标入栈。否则,2:当前栈顶出栈,并且用这个下标所指示的高度计算面积。而这个方法为什么只需要一个栈呢?因为当第二种情况时,for循环的循环下标回退,也就让下一次for循环比较当前高度与新的栈顶下标所指示的高度,注意此时的栈顶已经改变由于之前的出栈。
public class Solution {
// O(n) using one stack
public int largestRectangleArea(int[] height) {
// Start typing your Java solution below
// DO NOT write main() function
int area = 0;
java.util.Stack<Integer> stack = new java.util.Stack<Integer>();
for (int i = 0; i < height.length; i++) {
if (stack.empty() || height[stack.peek()] < height[i]) {
stack.push(i);
} else {
int start = stack.pop();
int width = stack.empty() ? i : i - stack.peek() - 1;
area = Math.max(area, height[start] * width);
i--;
}
}
while (!stack.empty()) {
int start = stack.pop();
int width = stack.empty() ? height.length : height.length
- stack.peek() - 1;
area = Math.max(area, height[start] * width);
}
return area;
}
}
转载自http://blog.youkuaiyun.com/abcbc/article/details/8943485