原文链接:大语言模型三种训练技术及区别:Prompt-Tuning、Instruction-Tuning和Chain-of-Thought (qq.com)
写在前面: 笔者更新不易,希望走过路过点个关注和赞,笔芯!!!
写在前面: 笔者更新不易,希望走过路过点个关注和赞,笔芯!!!
写在前面: 笔者更新不易,希望走过路过点个关注和赞,笔芯!!!
Prompt-Tuning、Instruction-Tuning和Chain-of-Thought是近几年十分流行的大模型训练技术,本文主要介绍这三种技术及其差别。

关于传统微调技术和新的prompt-tuning技术的区别和说明,我们已经在之前的文档中做了描述(参考:预训练大语言模型的三种微调技术总结:fine-tuning、parameter-efficient fine-tuning和prompt-tuning的介绍和对比)。在本文中,我们将详细解释Prompt-Tuning、Instruction-Tuning和Chain-of-Thought这三种大模型训练技术及其差别。
- Prompt-Tuning介绍
- Instruction-Tuning介绍
- Chain-of-Thought介绍
- 总结
- 附录:GPT-4生成的使用Instruction-Tuning微调GPT-4的案例
Prompt-Tuning介绍
一切还是从BERT(BERT模型卡信息:https://www.datalearner.com/ai/pretrained-models/BERT )说起,当年Google提出BERT模型的时候,一个最大的贡献是使用了Masked Language Model(MLM),即随机掩盖输入序列的一个token,然后利用相邻的tokens预测这个token是什么,这样模型可以学会更好地理解上下文。

BERT这种训练方式让模型在文本生成方面有很强的能力,因此,大家发现有时候不一定需要做fine-tuning即可让模型帮我们解决感兴趣的任务。只要我们把希望输出的部分删除掉,然后尽量构造与该输出有关的其它tokens即可。这就是prompt-tuning的一种想法!
与输出相关的tokens组成的上下文信息即可理解为是一个prompt。Prompt通常是一种短文本字符串,用于指导语言模型生成响应。Prompt提供上下文和任务相关信息,以帮助模型更好地理解要求,并生成正确的输出。例如,在问答任务中,prompt可能包含问题或话题的描述,以帮助模型生成正确的答案。Prompt通常是人类设计的,以帮

最低0.47元/天 解锁文章
2289

被折叠的 条评论
为什么被折叠?



