Why and When Perceptron Halts?

Pereceptron Learning Algorithm (PLA) is a binary classifier which can partition the linear separable points into two classes. 


Based on the Perceptron Convergence Theorem, we have:

For any finite set of linearly separable labeled examples, the PLA will halt after a finite number of iterations.


But why and when perceptron halts? 


Next, we will prove the Perceptron Convergence Theorem step by step.

Notations:

 : the weight of  step

: the example point used at  step

: the perfect weight corresponding to the target function, which means 

: the angle between 

: the cos value of angle between 

: margin, i.e. the Euclidean distance of the point  from the plane , where  is strictly positive since all points are classified correctly. 

: the minimal margin relative to the separation hyperplane 


Assume at the  step, , then the weight   is updated by 

So we have , and .


Then the numerator of  is: 


After applying the above inequality above n times, starting from , to get  (here we get the numerator of  )


If n is large enough, then we have 


Consider the denominator of  , 

where 


Apply the above inequality n times, we get



if n is large enough, then we get  (here we get the denominator of  )


Based on the inequality of both numerator and denominator of , we get 


We also know , so  and 


Now we get the maximum step is less than 


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值