3d场景重建&图像渲染 | 神经辐射场NeRF(Neural Radiance Fields)

神经辐射场NeRF(Neural Radiance Fields)

概念

     NeRF(Neural Radiance Fields,神经辐射场)是一种用于3D场景重建和图像渲染的深度学习方法。它由Ben Mildenhall等人在2020年的论文《NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis》中首次提出。NeRF通过学习场景的连续体积密度和颜色分布,能够从任意视角准确地渲染出高质量的3D场景图像。

工作原理(两部分)

        1. 3D场景重建:NeRF通过分析一组从不同视角拍摄的2D图片,学习场景的连续体积密度和颜色分布。这一步骤不是生成一个传统意义上的3D模型文件,而是训练一个深度学习模型,这个模型能够根据输入的3D位置(x, y, z)和观察方向(θ, φ)来预测该位置的颜色(RGB值)和体积密度(σ)。这样,NeRF模型实际上学习到了整个场景的3D表示。

        2. 图像渲染(特定视角):一旦3D场景被重建,就可以通过设置特定的摄像机参数(如位置、朝向和视角等)来从任意视角渲染2D图像。渲染过程模拟了光线从摄像机通过场景到达观察者眼睛的路径,通过计算沿这些路径的多个点的颜色和密度,然后综合这些信息来生成最终的像素颜色,从而形成完整的2D图像。

总结:NeRF模型通过深度神经网络学习场景的连续体积表示,并使用体积渲染技术从任意视角生成高质

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值