MultiLabel Text Classification using BERT Transformers

本文介绍了如何利用预训练的BERT模型进行多标签文本分类。首先将文本转换为数值特征向量,然后在数据集上训练模型,添加新的线性层进行概率预测,最后使用二元交叉熵损失和Adam优化器进行优化。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

作者:禅与计算机程序设计艺术

1.简介

Multi-label text classification is a challenging task where the goal is to classify texts into one or more predefined categories/labels from a given list of labels. Traditionally, multi-label text classification has been achieved by exploiting both classical machine learning algorithms such as Naive Bayes and Support Vector Machines (SVM), and deep neural networks such as Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs). However, with the rapid advancement of natural language processing techniques, it becomes possible for humans to label texts accurately, leading to the emergence of several techniques such as crowdsourcing platforms, weakly supervised learning methods, etc., which can provide valuable insigh

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI天才研究院

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值