446. 等差数列划分 II - 子序列

本文介绍了一种算法,用于计算一个整数数组中所有等差子序列的数量。等差子序列定义为数组中元素差相同的子序列,长度至少为3。文章通过示例说明了如何应用此算法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

如果一个数列至少有三个元素,并且任意两个相邻元素之差相同,则称该数列为等差数列。

例如,以下数列为等差数列:

1, 3, 5, 7, 9
7, 7, 7, 7
3, -1, -5, -9

以下数列不是等差数列。

1, 1, 2, 5, 7

 

数组 A 包含 N 个数,且索引从 0 开始。该数组子序列将划分为整数序列 (P0, P1, ..., Pk),P 与 Q 是整数且满足 0 ≤ P0 < P1 < ... < Pk < N。

 

如果序列 A[P0],A[P1],...,A[Pk-1],A[Pk] 是等差的,那么数组 A 的子序列 (P0,P1,…,PK) 称为等差序列。值得注意的是,这意味着 k ≥ 2。

函数要返回数组 A 中所有等差子序列的个数。

输入包含 N 个整数。每个整数都在 -231 和 231-1 之间,另外 0 ≤ N ≤ 1000。保证输出小于 231-1。

 

示例:

 

输入:[2, 4, 6, 8, 10]

输出:7

解释:
所有的等差子序列为:
[2,4,6]
[4,6,8]
[6,8,10]
[2,4,6,8]
[4,6,8,10]
[2,4,6,8,10]
[2,6,10]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值