HDU 4035 Maze (概率dp)

本文介绍了一种迷宫逃脱问题的解决算法,通过概率论和图论的方法计算出从迷宫中逃脱所需的平均隧道数量。文章详细解释了如何构建迷宫模型,并利用递归深度优先搜索来求解期望值。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Maze

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65768/65768 K (Java/Others)
Total Submission(s): 1917    Accepted Submission(s): 748
Special Judge


Problem Description
When wake up, lxhgww find himself in a huge maze.

The maze consisted by N rooms and tunnels connecting these rooms. Each pair of rooms is connected by one and only one path. Initially, lxhgww is in room 1. Each room has a dangerous trap. When lxhgww step into a room, he has a possibility to be killed and restart from room 1. Every room also has a hidden exit. Each time lxhgww comes to a room, he has chance to find the exit and escape from this maze.

Unfortunately, lxhgww has no idea about the structure of the whole maze. Therefore, he just chooses a tunnel randomly each time. When he is in a room, he has the same possibility to choose any tunnel connecting that room (including the tunnel he used to come to that room).
What is the expect number of tunnels he go through before he find the exit?
 

Input
First line is an integer T (T ≤ 30), the number of test cases.

At the beginning of each case is an integer N (2 ≤ N ≤ 10000), indicates the number of rooms in this case.

Then N-1 pairs of integers X, Y (1 ≤ X, Y ≤ N, X ≠ Y) are given, indicate there is a tunnel between room X and room Y.

Finally, N pairs of integers Ki and Ei (0 ≤ Ki, Ei ≤ 100, Ki + Ei ≤ 100, K1 = E1 = 0) are given, indicate the percent of the possibility of been killed and exit in the ith room.
 

Output
For each test case, output one line “Case k: ”. k is the case id, then the expect number of tunnels lxhgww go through before he exit. The answer with relative error less than 0.0001 will get accepted. If it is not possible to escape from the maze, output “impossible”.
 

Sample Input
3 3 1 2 1 3 0 0 100 0 0 100 3 1 2 2 3 0 0 100 0 0 100 6 1 2 2 3 1 4 4 5 4 6 0 0 20 30 40 30 50 50 70 10 20 60
 

Sample Output
Case 1: 2.000000 Case 2: impossible Case 3: 2.895522
 

这一个题参考 斌神 博客,他的题解很仔细,他真的太厉害了  http://www.cnblogs.com/kuangbin/archive/2012/10/03/2711108.html



#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<queue>
#include<stack>
#include<vector>
#include<set>
#include<map>


#define L(x) (x<<1)
#define R(x) (x<<1|1)
#define MID(x,y) ((x+y)>>1)

#define eps 1e-9
typedef __int64 ll;

#define fre(i,a,b)  for(i = a; i <b; i++)
#define free(i,b,a) for(i = b; i >= a;i--)
#define mem(t, v)   memset ((t) , v, sizeof(t))
#define ssf(n)      scanf("%s", n)
#define sf(n)       scanf("%d", &n)
#define sff(a,b)    scanf("%d %d", &a, &b)
#define sfff(a,b,c) scanf("%d %d %d", &a, &b, &c)
#define pf          printf
#define bug         pf("Hi\n")

using namespace std;

#define N 10005

int n;
vector<int>g[N];
double k[N],e[N];
double A[N],B[N],C[N];

bool dfs(int x,int pre)
{
	int m=g[x].size();
	int i;
	double p=1-e[x]-k[x];

	if(m==1&&x!=1)
	{
	   A[x]=k[x];
	   B[x]=p/m;
	   C[x]=p;
	  // cout<<"***"<<x<<endl;
	   return true;
	}

	A[x]=k[x];
	B[x]=p/m;
	C[x]=p;

	double te=0;

	fre(i,0,g[x].size())
	{
	   int to=g[x][i];
	   if(to==pre) continue;

	   if(!dfs(to,x)) return false;

	   A[x]+=p/m*A[to];
	   C[x]+=p/m*C[to];
	   te=te+p/m*B[to];
	}

	if(fabs(te-1)<eps) return false;

	A[x]=A[x]/(1-te);
	B[x]=B[x]/(1-te);
	C[x]=C[x]/(1-te);
	return true;
}

int main()
{
	int i,j,t,ca=0;
	sf(t);
	while(t--)
	{
		sf(n);
		fre(i,1,n+1)
		  g[i].clear();
		mem(A,0);
		mem(B,0);
		mem(C,0);
		i=n-1;
		int u,v;
		while(i--)
		{
			sff(u,v);
			g[u].push_back(v);
			g[v].push_back(u);
		}
        fre(i,1,n+1)
          {
          	sff(u,v);
          	k[i]=u*1.0/100;
          	e[i]=v*1.0/100;
          }

		pf("Case %d: ",++ca);
        if(!dfs(1,-1)||fabs(1-A[1])<eps)
			pf("impossible\n");
		else
			pf("%.6f\n",C[1]/(1-A[1]));
	}
   return 0;
}





评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值