Base -2
Input: Standard Input
Output: Standard Output
The creator of the universe works in mysterious ways. But |
Scott Adams
Everyone knows about base-2 (binary) integers and base-10 (decimal) integers, but what about base -2? An integer n written in base -2 is a sequence of digits (bi), writen right-to-left. Each of which is either 0 or 1 (no negative digits!), and the following equality must hold.
n = b0 + b1(-2) + b2(-2)2 + b3(-2)3 + ...
The cool thing is that every integer (including the negative ones) has a unique base--2 representation, with no minus sign required. Your task is to find this representation.
Input
The first line of input gives the number of cases, N (at most 10000). N test cases follow. Each one is a line containing a decimal integer in the range from -1,000,000,000 to 1,000,000,000.
Output
For each test case, output one line containing "Case #x:" followed by the same integer, written in base -2 with no leading zeros.
Sample Input Output for Sample Input
4 1 7 -2 0 |
Case #1: 1 Case #2: 11011 Case #3: 10 Case #4: 0 |
题意:将一个数转成-2进制。
思路:首先将N位可以表示的数的范围计算出来,然后依次往下看当前位是否需要为1即可。
AC代码如下:
#include<cstdio>
#include<cstring>
using namespace std;
typedef long long ll;
ll pow2[40],l[45],r[45];
int main()
{
int T,t,n,i,j,k,pos;
ll num,f;
f=1;pow2[1]=1;
for(i=2;i<=35;i++)
pow2[i]=pow2[i-1]*(-2);
for(i=1;i<=35;i++)
{
l[i]=l[i-1];
r[i]=r[i-1];
if(i&1)
r[i]+=f;
else
l[i]+=f;
f*=-2;
}
scanf("%d",&T);
for(t=1;t<=T;t++)
{
scanf("%lld",&num);
pos=1;
while(!(l[pos]<=num && num<=r[pos]))
pos++;
f=num;
printf("Case #%d: ",t);
for(i=pos;i>=1;i--)
{
if(l[i-1]<=num && num<=r[i-1])
printf("0");
else
{
printf("1");
num-=pow2[i];
}
}
printf("\n");
}
}