Solve It
Input: standard input
Output: standard output
Time Limit: 1 second
Memory Limit: 32 MB
Solve the equation:
p*e-x + q*sin(x) + r*cos(x) + s*tan(x) + t*x2 + u = 0
where 0 <= x <= 1.
Input
Input consists of multiple test cases and terminated by an EOF. Each test case consists of 6 integers in a single line: p, q, r, s, t and u(where 0 <= p,r <= 20 and -20 <= q,s,t <= 0). There will be maximum 2100 lines in the input file.
Output
For each set of input, there should be a line containing the value of x, correct upto 4 decimal places, or the string "No solution", whichever is applicable.
Sample Input
0 0 0 0 -2 1
1 0 0 0 -1 2
1 -1 1 -1 -1 1
Sample Output
0.7071
No solution
0.7554
题意:求上式中0的解x。
思路:二分求解。有一点我很奇怪的是,当eps=1e-6时WA,至少要1e-7,但是答案只需要输出前4位,这点我很无语,求解释。
AC代码如下:
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
double p,q,r,s,t,u,eps=1e-7;
double solve(double x)
{
return p*exp(-x)+q*sin(x)+r*cos(x)+s*tan(x)+t*x*x+u;
}
int main()
{
int n,i,j,k;
double L,R,mi;
while(~scanf("%lf%lf%lf%lf%lf%lf",&p,&q,&r,&s,&t,&u))
{
if(solve(0)*solve(1)>0)
{
printf("No solution\n");
continue;
}
L=0;R=1;
while(R-L>eps)
{
mi=(L+R)/2;
if(solve(mi)*solve(L)>0)
L=mi;
else
R=mi;
}
printf("%.4f\n",L);
}
}

本文介绍了一种通过二分法求解特定形式方程在区间[0,1]内的根的方法,并提供了一段AC代码实现。针对方程p*e^-x + q*sin(x) + r*cos(x) + s*tan(x) + t*x^2 + u = 0,讨论了精度设置与输出结果的关系。
4162

被折叠的 条评论
为什么被折叠?



