Dreamoon has a string s and a pattern string p. He
first removes exactly x characters from s obtaining
string s' as a result. Then he calculates
that
is defined as the maximal number of non-overlapping substrings equal to p that can be found in s'.
He wants to make this number as big as possible.
More formally, let's define
as
maximum value of
over
all s' that can be obtained by removing exactly x characters
froms. Dreamoon wants to know
for
all x from 0 to |s| where |s| denotes
the length of string s.
The first line of the input contains the string s (1 ≤ |s| ≤ 2 000).
The second line of the input contains the string p (1 ≤ |p| ≤ 500).
Both strings will only consist of lower case English letters.
Print |s| + 1 space-separated integers in a single line representing the
for
all x from 0 to |s|.
aaaaa aa
2 2 1 1 0 0
axbaxxb ab
0 1 1 2 1 1 0 0
For the first sample, the corresponding optimal values of s' after removal 0 through |s| = 5 characters from s are {"aaaaa", "aaaa","aaa", "aa", "a", ""}.
For the second sample, possible corresponding optimal values of s' are {"axbaxxb", "abaxxb", "axbab", "abab", "aba", "ab","a", ""}.
题意:在第一个字符串分别删除k个字符后,第二个字符串最多出现多少次。
思路:dp[i][j]表示前i个字符删除j个后第二个字符串最多出现多少次,每次先从i向前找最近的可以形成第二个字符串的位置,此时,从j+1到i可以非连续组成第二个字符串,遍历k,dp[i][k]=dp[j][k-(i-j-len2)]+1;之后dp[i][k]=max(dp[i][k],dp[i-1][k])。
AC代码如下:
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
int dp[2010][2010],ans[2010];
char s1[2010],s2[510];
int main()
{
int i,j,k,len1,len2;
scanf("%s%s",s1+1,s2+1);
len1=strlen(s1+1);
len2=strlen(s2+1);
for(i=0;i<=len1;i++)
{
k=len2;
for(j=i;j && k;j--)
if(s1[j]==s2[k])
k--;
if(k==0)
for(k=0;k<=i;k++)
if(k-(i-j-len2)>=0 &&k-(i-j-len2)<=j)
dp[i][k]=dp[j][k-(i-j-len2)]+1;
for(k=0;k<=i;k++)
dp[i][k]=max(dp[i][k],dp[i-1][k]);
}
for(i=0;i<=len1;i++)
printf("%d ",dp[len1][i]);
}

本文介绍了一个字符串匹配问题,通过动态规划算法来求解最优解。具体地,算法通过寻找最佳子串来最大化目标字符串的出现次数。
411

被折叠的 条评论
为什么被折叠?



