Doing Homework again - HDU 1789 背包dp

本文介绍了一个基于价值调整的01背包问题解决方案,用于优化学生在有限时间内完成多项作业的顺序,以最小化未完成作业的损失分数。通过将问题转化为求解最大价值和,采用排序和动态规划的方法实现了高效求解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Doing Homework again

Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 6610    Accepted Submission(s): 3950


Problem Description
Ignatius has just come back school from the 30th ACM/ICPC. Now he has a lot of homework to do. Every teacher gives him a deadline of handing in the homework. If Ignatius hands in the homework after the deadline, the teacher will reduce his score of the final test. And now we assume that doing everyone homework always takes one day. So Ignatius wants you to help him to arrange the order of doing homework to minimize the reduced score.
 

Input
The input contains several test cases. The first line of the input is a single integer T that is the number of test cases. T test cases follow.
Each test case start with a positive integer N(1<=N<=1000) which indicate the number of homework.. Then 2 lines follow. The first line contains N integers that indicate the deadlines of the subjects, and the next line contains N integers that indicate the reduced scores.
 

Output
For each test case, you should output the smallest total reduced score, one line per test case.
 

Sample Input
3 3 3 3 3 10 5 1 3 1 3 1 6 2 3 7 1 4 6 4 2 4 3 3 2 1 7 6 5 4
 

Sample Output
0 3 5
 

题意:完成一个作业需要一天,每个作业都有相应的权值和最后期限,问你没有完成的作业的最小权值是多少。

思路:我们不妨转换成n天之内,你能完成的作业的最大权值和是多少,这里用到一个价值改变的01背包,当时间大于期限的时候我们可以把他的价值看成是0。

AC代码如下:

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
struct node
{ int val,dead;
}work[1010];
bool cmp(node a,node b)
{ return a.dead<b.dead;
}
int dp[1010],sum,ans;
int main()
{ int t,n,i,j,k;
  scanf("%d",&t);
  while(t--)
  { scanf("%d",&n);
    sum=0;
    memset(dp,0,sizeof(dp));
    for(i=1;i<=n;i++)
     scanf("%d",&work[i].dead);
    for(i=1;i<=n;i++)
    { scanf("%d",&work[i].val);
      sum+=work[i].val;
    }
    sort(work+1,work+1+n,cmp);
    for(i=1;i<=n;i++)
    { for(j=n;j>work[i].dead;j--)
       dp[j]=max(dp[j],dp[j-1]);
      for(j=work[i].dead;j>=1;j--)
       dp[j]=max(dp[j],dp[j-1]+work[i].val);
    }
    ans=0;
    for(i=1;i<=n;i++)
     ans=max(ans,dp[i]);
    printf("%d\n",sum-ans);
  }
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值