Post Office - POJ 1160 dp

本文介绍了一个经典的邮局选址问题,即如何在多个村庄中选择若干地点建立邮局,以使所有村庄到最近邮局的总距离最小。文章提供了一种有效的动态规划解决方案,并附带了完整的AC代码。

Post Office
Time Limit: 1000MS Memory Limit: 10000K
Total Submissions: 15376 Accepted: 8330

Description

There is a straight highway with villages alongside the highway. The highway is represented as an integer axis, and the position of each village is identified with a single integer coordinate. There are no two villages in the same position. The distance between two positions is the absolute value of the difference of their integer coordinates. 

Post offices will be built in some, but not necessarily all of the villages. A village and the post office in it have the same position. For building the post offices, their positions should be chosen so that the total sum of all distances between each village and its nearest post office is minimum. 

You are to write a program which, given the positions of the villages and the number of post offices, computes the least possible sum of all distances between each village and its nearest post office. 

Input

Your program is to read from standard input. The first line contains two integers: the first is the number of villages V, 1 <= V <= 300, and the second is the number of post offices P, 1 <= P <= 30, P <= V. The second line contains V integers in increasing order. These V integers are the positions of the villages. For each position X it holds that 1 <= X <= 10000.

Output

The first line contains one integer S, which is the sum of all distances between each village and its nearest post office.

Sample Input

10 5
1 2 3 6 7 9 11 22 44 50

Sample Output

9

题意:在v个村庄之间设立p个邮局,使得所有村庄到最近的邮局的距离和最小。

思路:先求出sum[i][j]为i到j的村庄之间如果设立一个邮局的距离最小和,sum[i][j]=sum[i][j-1]+num[j]-num[(i+j)/2];因为邮局设在中间肯定是距离最小的,偶数个的话,中间的两个是一样的。然后遍历k使得dp[i][j]=min(dp[i][j],dp[k][j-1]+sum[k+1][i]);表示到i个村庄设立j个邮局的最短距离。

AC代码如下:

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
int sum[310][310],num[310],dp[310][40];
int main()
{ int i,j,k,v,p;
  scanf("%d%d",&v,&p);
  for(i=1;i<=v;i++)
   scanf("%d",&num[i]);
  for(i=1;i<=v;i++)
   for(j=i+1;j<=v;j++)
    sum[i][j]=sum[i][j-1]+num[j]-num[(i+j)/2];
  for(i=1;i<=v;i++)
  { dp[i][1]=sum[1][i];
    for(j=2;j<=p;j++)
    { dp[i][j]=dp[1][j-1]+sum[2][i];
      for(k=2;k<i;k++)
       dp[i][j]=min(dp[i][j],dp[k][j-1]+sum[k+1][i]);
    }
  }
  printf("%d\n",dp[v][p]);
}




内容概要:本文围绕SecureCRT自动化脚本开发在毕业设计中的应用,系统介绍了如何利用SecureCRT的脚本功能(支持Python、VBScript等)提升计算机、网络工程等相关专业毕业设计的效率与质量。文章从关键概念入手,阐明了SecureCRT脚本的核心对象(如crt、Screen、Session)及其在解决多设备调试、重复操作、跨场景验证等毕业设计常见痛点中的价值。通过三个典型应用场景——网络设备配置一致性验证、嵌入式系统稳定性测试、云平台CLI兼容性测试,展示了脚本的实际赋能效果,并以Python实现的交换机端口安全配置验证脚本为例,深入解析了会话管理、屏幕同步、输出解析、异常处理和结果导出等关键技术细节。最后展望了低代码化、AI辅助调试和云边协同等未来发展趋势。; 适合人群:计算机、网络工程、物联网、云计算等相关专业,具备一定编程基础(尤其是Python)的本科或研究生毕业生,以及需要进行设备自动化操作的科研人员; 使用场景及目标:①实现批量网络设备配置的自动验证与报告生成;②长时间自动化采集嵌入式系统串口数据;③批量执行云平台CLI命令并分析兼容性差异;目标是提升毕业设计的操作效率、增强实验可复现性与数据严谨性; 阅读建议:建议读者结合自身毕业设计课题,参考文中代码案例进行本地实践,重点关注异常处理机制与正则表达式的适配,并注意敏感信息(如密码)的加密管理,同时可探索将脚本与外部工具(如Excel、数据库)集成以增强结果分析能力。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值