Time Limit: 1000MS | Memory Limit: 65536K | |
Total Submissions: 3699 | Accepted: 1056 |
Description
Given N numbers, X1, X2, ... , XN, let us calculate the difference of every pair of numbers: ∣Xi - Xj∣ (1 ≤ i < j ≤ N). We can get C(N,2) differences through this work, and now your task is to find the median of the differences as quickly as you can!
Note in this problem, the median is defined as the (m/2)-th smallest number if m,the amount of the differences, is even. For example, you have to find the third smallest one in the case of m = 6.
Input
The input consists of several test cases.
In each test case, N will be given in the first line. Then N numbers are given, representing X1, X2, ... , XN, ( Xi ≤ 1,000,000,000 3 ≤ N ≤ 1,00,000 )
Output
For each test case, output the median in a separate line.
Sample Input
4 1 3 2 4 3 1 10 2
Sample Output
1 8
题意:找到所有数两者差的集合中和第k小的数,k为(C(N,2)+1)/2,因为如果不能整除的话要+1再除以2。
思路:排序后二分第k小的数,每次枚举对于每个数,左边有多少个比它小的数可以使他们的差不大于二分出的第k小的数,这里还要再用一次二分。
AC代码如下:
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
int n,num[100010],k,mi;
int divi(int pos)
{ int l=1,r=pos-1,mid;
while(l<=r)
{ mid=(l+r)/2;
if(num[pos]-num[mid]<=mi)
r=mid-1;
else
l=mid+1;
}
return l;
}
bool solve()
{ int ans=0,i;
for(i=2;i<=n;i++)
ans+=i-divi(i);
if(ans>=k)
return true;
else
return false;
}
int main()
{ int i,j,l,r,ans;
while(~scanf("%d",&n))
{ for(i=1;i<=n;i++)
scanf("%d",&num[i]);
sort(num+1,num+1+n);
k=n*(n-1)/2;
if(k%2==0)
k/=2;
else
k=(k+1)/2;
l=1;r=1000000000;
while(l<=r)
{ mi=(l+r)/2;
if(solve())
r=mi-1;
else
l=mi+1;
}
printf("%d\n",l);
}
}