Median - POJ 3579 二分

本文介绍了一个高效算法来找出给定一组数的所有两两差的中位数。通过排序和二分查找,该算法能快速解决这一问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Median
Time Limit: 1000MS Memory Limit: 65536K
Total Submissions: 3699 Accepted: 1056

Description

Given N numbers, X1X2, ... , XN, let us calculate the difference of every pair of numbers: ∣Xi - Xj∣ (1 ≤ i  j  N). We can get C(N,2) differences through this work, and now your task is to find the median of the differences as quickly as you can!

Note in this problem, the median is defined as the (m/2)-th  smallest number if m,the amount of the differences, is even. For example, you have to find the third smallest one in the case of = 6.

Input

The input consists of several test cases.
In each test case, N will be given in the first line. Then N numbers are given, representing X1X2, ... , XN, ( X≤ 1,000,000,000  3 ≤ N ≤ 1,00,000 )

Output

For each test case, output the median in a separate line.

Sample Input

4
1 3 2 4
3
1 10 2

Sample Output

1
8

题意:找到所有数两者差的集合中和第k小的数,k为(C(N,2)+1)/2,因为如果不能整除的话要+1再除以2。

思路:排序后二分第k小的数,每次枚举对于每个数,左边有多少个比它小的数可以使他们的差不大于二分出的第k小的数,这里还要再用一次二分。

AC代码如下:

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
int n,num[100010],k,mi;
int divi(int pos)
{ int l=1,r=pos-1,mid;
  while(l<=r)
  { mid=(l+r)/2;
    if(num[pos]-num[mid]<=mi)
     r=mid-1;
    else
     l=mid+1;
  }
  return l;
}
bool solve()
{ int ans=0,i;
  for(i=2;i<=n;i++)
   ans+=i-divi(i);
  if(ans>=k)
   return true;
  else
   return false;
}
int main()
{ int i,j,l,r,ans;
  while(~scanf("%d",&n))
  { for(i=1;i<=n;i++)
     scanf("%d",&num[i]);
    sort(num+1,num+1+n);
    k=n*(n-1)/2;
    if(k%2==0)
     k/=2;
    else
     k=(k+1)/2;
    l=1;r=1000000000;
    while(l<=r)
    { mi=(l+r)/2;
      if(solve())
       r=mi-1;
      else
       l=mi+1;
    }
    printf("%d\n",l);
  }
}





评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值