Time Limit: 1000MS | Memory Limit: 65536K | |
Total Submissions: 5774 | Accepted: 2001 |
Description
In a certain course, you take n tests. If you get ai out of bi questions correct on test i, your cumulative average is defined to be
.
Given your test scores and a positive integer k, determine how high you can make your cumulative average if you are allowed to drop any k of your test scores.
Suppose you take 3 tests with scores of 5/5, 0/1, and 2/6. Without dropping any tests, your cumulative average is . However, if you drop the third test, your cumulative average becomes
.
Input
The input test file will contain multiple test cases, each containing exactly three lines. The first line contains two integers, 1 ≤ n ≤ 1000 and 0 ≤ k < n. The second line contains n integers indicating ai for all i. The third line contains n positive integers indicating bi for all i. It is guaranteed that 0 ≤ ai ≤ bi ≤ 1, 000, 000, 000. The end-of-file is marked by a test case with n = k = 0 and should not be processed.
Output
For each test case, write a single line with the highest cumulative average possible after dropping k of the given test scores. The average should be rounded to the nearest integer.
Sample Input
3 1 5 0 2 5 1 6 4 2 1 2 7 9 5 6 7 9 0 0
Sample Output
83 100
Hint
To avoid ambiguities due to rounding errors, the judge tests have been constructed so that all answers are at least 0.001 away from a decision boundary (i.e., you can assume that the average is never 83.4997).
题意:问n对数中去掉k对后的比最大平均数是多少。
思路:这道题用贪心做找最大价值的做法是不对的。二分枚举这个平均数,然后看如果最大平均数是这个,那么sum的和是否大于0,(sum的意思具体见代码吧)。此外这道题在挑战程序设计竞赛中的145页也有代码。
AC代码如下:
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
int n,k;
int w[1010];
int v[1010];
double y[1010];
bool solve(double x)
{ int i;
double sum=0;
for(i=1;i<=n;i++)
y[i]=v[i]-w[i]*x;
sort(y+1,y+1+n);
for(i=1;i<=n-k;i++)
sum+=y[n-i+1];
if(sum>=0)
return true;
else
return false;
}
int main()
{ int i,j;
while(~scanf("%d%d",&n,&k) && n>0)
{ double l=0,r=1000000010,mi;
for(i=1;i<=n;i++)
scanf("%d",&v[i]);
for(i=1;i<=n;i++)
scanf("%d",&w[i]);
for(i=1;i<=300;i++)
{ mi=(l+r)/2;
if(solve(mi))
l=mi;
else
r=mi;
}
printf("%.f\n",l*100);
}
}