tf.variable_scope可以让变量有相同的命名,包括tf.get_variable得到的变量,还有tf.Variable的变量
tf.name_scope可以让变量有相同的命名,只是限于tf.Variable的变量
1.tf.variable_scope用法
- import tensorflow as tf;
- import numpy as np;
- import matplotlib.pyplot as plt;
-
- with tf.variable_scope('V1'):
- a1 = tf.get_variable(name='a1', shape=[1], initializer=tf.constant_initializer(1))
- a2 = tf.Variable(tf.random_normal(shape=[2,3], mean=0, stddev=1), name='a2')
- with tf.variable_scope('V2'):
- a3 = tf.get_variable(name='a1', shape=[1], initializer=tf.constant_initializer(1))
- a4 = tf.Variable(tf.random_normal(shape=[2,3], mean=0, stddev=1), name='a2')
-
- with tf.Session() as sess:
- sess.run(tf.initialize_all_variables())
- print a1.name
- print a2.name
- print a3.name
- print a4.name
结果:
V1/a1:0
V1/a2:0
V2/a1:0
V2/a2:0
2.tf.name_scope用法
- import tensorflow as tf;
- import numpy as np;
- import matplotlib.pyplot as plt;
-
- with tf.name_scope('V1'):
- a1 = tf.get_variable(name='a1', shape=[1], initializer=tf.constant_initializer(1))
- a2 = tf.Variable(tf.random_normal(shape=[2,3], mean=0, stddev=1), name='a2')
- with tf.name_scope('V2'):
- a3 = tf.get_variable(name='a1', shape=[1], initializer=tf.constant_initializer(1))
- a4 = tf.Variable(tf.random_normal(shape=[2,3], mean=0, stddev=1), name='a2')
-
- with tf.Session() as sess:
- sess.run(tf.initialize_all_variables())
- print a1.name
- print a2.name
- print a3.name
- print a4.name
报错:Variable a1 already exists, disallowed. Did you mean to set reuse=True in VarScope? Originally defined at:
改正:
- import tensorflow as tf;
- import numpy as np;
- import matplotlib.pyplot as plt;
-
- with tf.name_scope('V1'):
-
- a2 = tf.Variable(tf.random_normal(shape=[2,3], mean=0, stddev=1), name='a2')
- with tf.name_scope('V2'):
-
- a4 = tf.Variable(tf.random_normal(shape=[2,3], mean=0, stddev=1), name='a2')
-
- with tf.Session() as sess:
- sess.run(tf.initialize_all_variables())
-
- print a2.name
-
- print a4.name
结果:
V1/a2:0
V2/a2:0