CF #261 div2 D. Pashmak and Parmida's problem (树状数组版)

本文讨论了一个关于序列中元素出现频率比较的问题,并通过引入树状数组优化了求解过程。详细解释了如何使用树状数组进行高效计算。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Parmida is a clever girl and she wants to participate in Olympiads this year. Of course she wants her partner to be clever too (although he's not)! Parmida has prepared the following test problem for Pashmak.

There is a sequence a that consists of n integers a1, a2, ..., an. Let's denote f(l, r, x) the number of indices k such that: l ≤ k ≤ r and ak = x. His task is to calculate the number of pairs of indicies i, j (1 ≤ i < j ≤ n) such that f(1, i, ai) > f(j, n, aj).

Help Pashmak with the test.

Input

The first line of the input contains an integer n (1 ≤ n ≤ 106). The second line contains n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 109).

Output

Print a single integer — the answer to the problem.

Sample test(s)
Input
7
1 2 1 1 2 2 1
Output
8
Input
3
1 1 1
Output
1
Input
5
1 2 3 4 5
Output
0



树状数组写起来更方便。


#include <iostream>
#include <cstring>
#include <cstdio>
#include <cmath>
#include <set>
#include <stack>
#include <cctype>
#include <algorithm>
#define lson o<<1, l, m
#define rson o<<1|1, m+1, r
using namespace std;
typedef long long LL;
const int mod = 99999997;
const int MAX = 0x3f3f3f3f;
const int maxn = 1000010;
int n, a, b;
int in[maxn], f[maxn], vis[maxn], l[maxn], r[maxn], tt[maxn];
int c[maxn];
int bs(int v, int x, int y) {
    while(x < y) {
        int m = (x+y) >> 1;
        if(in[m] >= v) y = m;
        else x = m+1;
    }
    return x;
}
int main()
{
    cin >> n;
    for(int i = 0; i < n; i++) {
        scanf("%d", &in[i]);
        tt[i] = in[i];
    }
    sort(in, in+n);
    int m = unique(in, in+n) - in;
    for(int i = 0; i < n; i++) {
        f[i] = bs(tt[i], 0, m-1) + 1;
        vis[ f[i] ]++;
        l[i+1] = vis[ f[i] ];
    }
    memset(vis, 0, sizeof(vis));
    for(int i = n-1; i >= 0; i--) {
        f[i] = bs(tt[i], 0, m-1) + 1;
        vis[ f[i] ]++;
        r[i+1] = vis[ f[i] ];
    }
    LL sum = 0;
    for(int i = 1; i <= n; i++) {
        for(int j = r[i]+1; j <= maxn; j += j&-j) sum += c[j];
        for(int j = l[i]; j > 0; j -= j&-j) c[j]++;
    }
    cout << sum << endl;
    return 0;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值