V3Det与LaRS是ICCV2023上发表的数据集工作,规模都比较大,后续有可能会用到,因此记录下来。
V3Det: Vast Vocabulary Visual Detection Dataset
Paper: https://arxiv.org/abs/2304.03752
URL: https://v3det.openxlab.org.cn/
在现实世界中检测任意对象的最新进展是在词汇相对有限的对象检测数据集上进行训练和评估的。为了便于开发更通用的视觉对象检测,我们提出了V3Det,这是一个庞大的词汇视觉检测数据集,在海量图像上具有精确注释的边界框。V3Det具有几个吸引人的特性:1)丰富的词汇:它包含来自真实世界图像上13204个类别的对象的边界框,比现有的大词汇对象检测数据集(例如LVIS)大10倍。2) 层次类别组织:V3Det的庞大词汇由一个层次类别树组织,该树注释了类别之间的包含关系,鼓励在庞大和开放的词汇对象检测中探索类别关系。3) 丰富的注释:V3Det包含243k张图像中的精确注释对象