注:本文为 “信号与系统 | FT LT ZT 比较与讨论及应用” 相关合辑。
英文引文,机翻未校。
中文引文,略作重排。
如有内容异常,请看原文。
Comparison to Fourier Transform, Laplace Transform and Z Transform
傅里叶变换、拉普拉斯变换和 Z 变换的比较
Phillweston Blog
Comparing the Laplace transform, the Fourier transform, and the Z transform highlights the distinct features and applications of each in the fields of signal processing, control systems, and applied mathematics. Let’s examine each transformation and how they relate to one another:
将拉普拉斯变换、傅里叶变换和 Z 变换进行比较,可以突出每种变换在信号处理、控制系统和应用数学领域的独特特性和应用。让我们来考察每种变换以及它们之间的关系:
Laplace Transform
拉普拉斯变换
-
Domain: Continuous-time domain.
域:连续时间域。 -
Definition: L { f ( t ) } = F ( s ) = ∫ 0 − ∞ e − s t f ( t ) d t \mathcal{L}\{f(t)\} = F(s) = \int_{0^-}^{\infty} e^{-st} f(t) \, dt L{f(t)}=F(s)=∫0−∞e−stf(t)dt where s = σ + j ω s = \sigma + j\omega s=σ+jω is a complex variable.
定义: L { f ( t ) } = F ( s ) = ∫ 0 − ∞ e − s t f ( t ) d t \mathcal{L}\{f(t)\} = F(s) = \int_{0^-}^{\infty} e^{-st} f(t) \, dt L{f(t)}=F(s)=∫0−∞e−stf(t)dt,其中 s = σ + j ω s = \sigma + j\omega s=σ+jω 是一个复变量。 -
Applications: Widely used in control systems, circuit analysis, and solving differential equations.
应用:广泛用于控制系统、电路分析以及求解微分方程。 -
Key Features:
关键特性:- Includes a convergence factor
e
−
σ
t
e^{-\sigma t}
e−σt, allowing it to handle a broader range of functions, including those with exponential growth.
包含一个收敛因子 e − σ t e^{-\sigma t} e−σt,使其能够处理更广泛的函数,包括那些具有指数增长的函数。 - Provides information about system stability and transient response.
提供有关系统稳定性和瞬态响应的信息。 - Region of Convergence (ROC) is crucial for determining the behavior of the system.
收敛域(ROC)对于确定系统的行为至关重要。
- Includes a convergence factor
e
−
σ
t
e^{-\sigma t}
e−σt, allowing it to handle a broader range of functions, including those with exponential growth.
Fourier Transform
傅里叶变换
-
Domain: Continuous-time domain.
域:连续时间域。 -
Definition: F { f ( t ) } = F ( ω ) = ∫ − ∞ ∞ e − j ω t f ( t ) d t \mathcal{F}\{f(t)\} = F(\omega) = \int_{-\infty}^{\infty} e^{-j\omega t} f(t) \, dt F{f(t)}=F(ω)=∫−∞∞e−jωtf(t)dt where ω \omega ω is the angular frequency.
定义: F { f ( t ) } = F ( ω ) = ∫ − ∞ ∞ e − j ω t f ( t ) d t \mathcal{F}\{f(t)\} = F(\omega) = \int_{-\infty}^{\infty} e^{-j\omega t} f(t) \, dt F{f(t)}=F(ω)=∫−∞∞e−jωtf(t)dt,其中 ω \omega ω 是角频率。 -
Applications: Essential in signal processing, communications, and frequency analysis.
应用:在信号处理、通信和频率分析中至关重要。 -
Key Features:
关键特性:- Focuses on representing functions in terms of sinusoids or complex exponentials.
侧重于用正弦波或复指数来表示函数。 - Used for analyzing the frequency content of signals.
用于分析信号的频率成分。 - Limited to functions that are integrable or square-integrable.
仅限于可积或平方可积的函数。
- Focuses on representing functions in terms of sinusoids or complex exponentials.
Z Transform
Z 变换
-
Domain: Discrete-time domain.
域:离散时间域。 -
Definition: Z { f [ n ] } = F ( z ) = ∑ n = − ∞ ∞ f [ n ] z − n \mathcal{Z}\{f[n]\} = F(z) = \sum_{n = -\infty}^{\infty} f[n] z^{-n} Z{f[n]}=F(z)=∑n=−∞∞f[n]z−n where z z z is a complex variable.
定义: Z { f [ n ] } = F ( z ) = ∑ n = − ∞ ∞ f [ n ] z − n \mathcal{Z}\{f[n]\} = F(z) = \sum_{n = -\infty}^{\infty} f[n] z^{-n} Z{f[n]}=F(z)=∑n=−∞∞f[n]z−n,其中 z z z 是一个复变量。 -
Applications: Fundamental in digital signal processing and discrete-time control systems.
应用:在数字信号处理和离散时间控制系统中具有基础性作用。 -
Key Features:
关键特性:- Converts difference equations into algebraic equations, simplifying the analysis of discrete-time systems.
将差分方程转换为代数方程,简化离散时间系统的分析。 - The unit circle in the Z-plane (where
∣
z
∣
=
1
|z| = 1
∣z∣=1) is critical for analyzing the frequency response of discrete-time systems.
Z 平面中的单位圆(其中 ∣ z ∣ = 1 |z| = 1 ∣z∣=1)对于分析离散时间系统的频率响应至关重要。 - The ROC is important for stability and causality.
收敛域(ROC)对于稳定性和因果性很重要。
- Converts difference equations into algebraic equations, simplifying the analysis of discrete-time systems.
Comparison
比较
-
Signal Type:
信号类型:- Laplace and Fourier transforms are for continuous-time signals.
拉普拉斯变换和傅里叶变换用于连续时间信号。 - Z transform is for discrete-time signals.
Z 变换用于离散时间信号。
- Laplace and Fourier transforms are for continuous-time signals.
-
Complex vs. Real Variable:
复变量与实变量:- Laplace and Z transforms use a complex variable (
s
s
s and
z
z
z, respectively).
拉普拉斯变换和 Z 变换使用复变量(分别为 s s s 和 z z z)。 - Fourier transform uses a real variable (
ω
\omega
ω).
傅里叶变换使用实变量( ω \omega ω)。
- Laplace and Z transforms use a complex variable (
s
s
s and
z
z
z, respectively).
-
Applications:
应用:- Laplace transform is more common in system analysis, control theory, and continuous-time systems.
拉普拉斯变换更常用于系统分析、控制理论和连续时间系统。 - Fourier transform is widely used in signal analysis, particularly for frequency content analysis in continuous-time signals.
傅里叶变换广泛用于信号分析,特别是在连续时间信号的频率成分分析中。 - Z transform is essential in digital signal processing and analysis of discrete-time systems.
Z 变换在数字信号处理和离散时间系统的分析中至关重要。
- Laplace transform is more common in system analysis, control theory, and continuous-time systems.
-
Convergence and Stability:
收敛性和稳定性:- Laplace and Z transforms include a ROC, which is crucial for determining the stability and causality of systems.
拉普拉斯变换和 Z 变换包括一个收敛域(ROC),这对于确定系统的稳定性和因果性至关重要。 - Fourier transform does not have a ROC but is limited to signals that meet certain integrability conditions.
傅里叶变换没有收敛域,但仅限于满足某些可积性条件的信号。
- Laplace and Z transforms include a ROC, which is crucial for determining the stability and causality of systems.
-
Consideration:
考虑:- Consider the Z transform as a discrete representation of the Fourier transform for better understanding.
将 Z 变换视为傅里叶变换的离散表示,以便更好地理解。
- Consider the Z transform as a discrete representation of the Fourier transform for better understanding.
Each transform has its unique strengths and is chosen based on the specific requirements of the problem at hand, whether it involves continuous or discrete signals, the need for frequency or time-domain analysis, or the type of system being analyzed.
每种变换都有其独特的优点,具体选择取决于手头问题的具体需求,无论是涉及连续信号还是离散信号,是需要频率域分析还是时域分析,还是所分析的系统类型。
Relation and difference between Fourier, Laplace and Z transforms
傅里叶变换、拉普拉斯变换和 Z 变换之间的关系与区别
Question: Confusion and Needs Regarding the Three Transforms
I have become a bit confused about these topics. They’ve all started looking the same to me. They seem to have the same properties such as linearity, shifting and scaling associated with them. I can’t seem to put them separately and identify the purpose of each transform. Also, which one of these is used for frequency analysis?
我对这些主题有点困惑。它们在我眼中开始看起来都一样了。它们似乎具有相同的属性,如线性、时移和尺度变换。我似乎无法将它们分开并识别每种变换的目的。此外,这些变换中哪一种用于频率分析?
I couldn’t find (with Google) a complete answer that addresses this specific issue. I wish to see them compared on the same page so that I can have some clarity.
我没能找到(通过谷歌搜索)一个完整地解答这一具体问题的答案。我希望能在同一页面上看到它们的比较,以便我能更清楚地理解。
edited Oct 26, 2013 at 6:51
Nick Alexeev
asked Oct 25, 2013 at 13:55
Vineet Kaushik
Answers
Answer 1: Core Definitions & Continuous/Discrete Distinction (Alfred Centauri)
回答 1:定义与连续/离散区分(Alfred Centauri)
The Laplace and Fourier transforms are continuous (integral) transforms of continuous functions.
拉普拉斯变换和傅里叶变换是连续函数的 连续(积分)变换。
The Laplace transform maps a function
f
(
t
)
f(t)
f(t) to a function
F
(
s
)
F(s)
F(s) of the complex variable
s
s
s, where
s
=
σ
+
j
ω
s = \sigma + j\omega
s=σ+jω.
拉普拉斯变换将一个函数
f
(
t
)
f(t)
f(t) 映射到复变量
s
s
s 的函数
F
(
s
)
F(s)
F(s),其中
s
=
σ
+
j
ω
s = \sigma + j\omega
s=σ+jω。
Since the derivative
f
˙
(
t
)
=
d
f
(
t
)
d
t
\dot f(t) = \frac{df(t)}{dt}
f˙(t)=dtdf(t) maps to
s
F
(
s
)
sF(s)
sF(s), the Laplace transform of a linear differential equation is an algebraic equation. Thus, the Laplace transform is useful for, among other things, solving linear differential equations.
由于导数
f
˙
(
t
)
=
d
f
(
t
)
d
t
\dot f(t) = \frac{df(t)}{dt}
f˙(t)=dtdf(t) 映射到
s
F
(
s
)
sF(s)
sF(s),线性微分方程的拉普拉斯变换是一个代数方程。因此,拉普拉斯变换在解决线性微分方程等方面非常有用。
If we set the real part of the complex variable
s
s
s to zero,
σ
=
0
\sigma = 0
σ=0, the result is the Fourier transform
F
(
j
ω
)
F(j\omega)
F(jω) which is essentially the frequency domain representation of
f
(
t
)
f(t)
f(t) (note that this is true only if for that value of
σ
\sigma
σ the formula to obtain the Laplace transform of
f
(
t
)
f(t)
f(t) exists, i.e., it does not go to infinity).
如果我们把复变量
s
s
s 的实部设为零,
σ
=
0
\sigma = 0
σ=0,结果就是傅里叶变换
F
(
j
ω
)
F(j\omega)
F(jω),这基本上是
f
(
t
)
f(t)
f(t) 的 频域表示(请注意,这只有在
σ
\sigma
σ 的值使得
f
(
t
)
f(t)
f(t) 的拉普拉斯变换公式存在,即不会趋于无穷大时才成立)。
The Z-transform is essentially a discrete version of the Laplace transform and, thus, can be useful in solving difference equations, the discrete version of differential equations. The Z-transform maps a sequence
f
[
n
]
f[n]
f[n] to a continuous function
F
(
z
)
F(z)
F(z) of the complex variable
z
=
r
e
j
Ω
z = re^{j\Omega}
z=rejΩ.
Z 变换本质上是拉普拉斯变换的离散版本,因此在解决 差分 方程(微分方程的离散版本)方面很有用。Z 变换将一个序列
f
[
n
]
f[n]
f[n] 映射到复变量
z
=
r
e
j
Ω
z = re^{j\Omega}
z=rejΩ 的连续函数
F
(
z
)
F(z)
F(z)。
If we set the magnitude of
z
z
z to unity,
r
=
1
r = 1
r=1, the result is the Discrete Time Fourier Transform (DTFT)
F
(
j
Ω
)
F(j\Omega)
F(jΩ) which is essentially the frequency domain representation of
f
[
n
]
f[n]
f[n].
如果我们把
z
z
z 的模设为 1,
r
=
1
r = 1
r=1,结果就是离散时间傅里叶变换(DTFT)
F
(
j
Ω
)
F(j\Omega)
F(jΩ),这基本上是
f
[
n
]
f[n]
f[n] 的频域表示。
edited Apr 21, 2017 at 5:59
CommunityBot
answered Oct 25, 2013 at 15:15
Alfred Centauri
Comment Supplement 1: Generality of Transforms & Signal Application Scenarios
评论补充 1:拉普拉斯与傅里叶的通用性及信号适用场景
-
The s s s in the Laplace Transform is a complex number, say a + j ω a + j\omega a+jω, so it’s a more general transform than the completely imaginary Fourier transform. In fact, so long as you’re in the Region of Convergence, it’s fair game to go back and forth between the two just by replacing j ω j\omega jω with s s s and vice versa.
拉普拉斯变换中的 s s s 是一个复数,比如说 a + j ω a + j\omega a+jω,因此它比完全虚数的傅里叶变换更通用。实际上,只要你处于收敛域内,就可以通过把 j ω j\omega jω 替换为 s s s,反之亦然,在两者之间来回转换。
– Scott Seidman
Commented Oct 25, 2013 at 16:19 -
I find it useful to think of the Fourier transform as something you apply to periodic signals, and the Laplace transform as something you apply to time-varying signals. (This is a consequence of what @ScottSeidman explained above.)
我觉得把傅里叶变换看作是应用于周期信号的东西,把拉普拉斯变换看作是应用于时变信号的东西很有用。(这是 @ScottSeidman 上面解释的内容的结果。)
– Li-aung Yip
Commented Oct 26, 2013 at 6:23 -
@Alfred: You haven’t actually addressed which one of these is used for frequency analysis - for completeness it is probably worth mentioning that most people use the FFT for frequency analysis, and how the FFT fits in with the things already listed.
@Alfred:你实际上并没有提到这些中哪一个用于频率分析——为了完整性,大概值得提一下大多数人用 FFT 进行频率分析,以及 FFT 如何与已经列出的内容相适应。
– Li-aung Yip
Commented Oct 26, 2013 at 6:32 -
@Li-aungYip, I think you may be conflating the Fourier series and the Fourier transform. The Fourier series is for periodic functions; the Fourier transform can be thought of as the Fourier series in the limit as the period goes to infinity. So, the Fourier transform is for aperiodic signals. Also, since periodic signals are necessarily time-varying signals, I don’t “get” the distinction you’re drawing.
@Li-aungYip,我觉得你可能把傅里叶级数和傅里叶变换混为一谈了。傅里叶级数是用于周期函数的;傅里叶变换可以被看作是周期趋于无穷大时的傅里叶级数。所以,傅里叶变换是用于非周期信号的。此外,由于周期信号必然是时变信号,我不明白你所作的区分。
– Alfred Centauri
Commented Oct 26, 2013 at 11:51 -
@Li-aungYip Also, FFT is used to compute DFT (Discrete Fourier Transform), not DTFT (Discrete-Time Fourier Transform). DFT is like taking samples in the frequency domain after having a DTFT (which is continuous for aperiodic signals). It is just a tool used in computers for fast computations (okay, we can use it manually too). But FFT comes after you understand DTFT and CTFT (Continuous-Time Fourier Transform).
@Li-aungYip 另外,FFT 用于计算 DFT(离散傅里叶变换),而不是 DTFT(离散时间傅里叶变换)。DFT 就像是在有了 DTFT(对于非周期信号是连续的)之后在频域中取样。它只是用于计算机快速计算的工具(好吧,我们也可以手动使用它)。但 FFT 是在你理解 DTFT 和 CTFT(连续时间傅里叶变换)之后才使用的。
– Anshul
Commented Oct 30, 2013 at 11:07
Answer 2: Inclusion Relationship & Convergence of Transforms (Anshul)
回答 2:变换的包含关系与收敛性(Anshul)
Laplace transforms may be considered to be a super-set of CTFT (Continuous-Time Fourier Transform). You see, on a ROC (Region of Convergence) if the roots of the transfer function lie on the imaginary axis, i.e., for
s
=
σ
+
j
ω
s = \sigma + j\omega
s=σ+jω,
σ
=
0
\sigma = 0
σ=0, as mentioned in previous comments, the Laplace transform is reduced to the Continuous-Time Fourier Transform (CTFT). To rewind back a little, it would be good to know why Laplace transforms evolved in the first place when we had Fourier Transforms. You see, convergence of the function (signal) is a compulsory condition for a Fourier Transform to exist (absolutely summable), but there are also signals in the physical world where it is not possible to have such convergent signals. But, since analysing them is necessary, we make them converge by multiplying a monotonically decreasing exponential
e
−
σ
t
e^{-\sigma t}
e−σt to them, which makes them converge by its very nature. This new
σ
+
j
ω
\sigma + j\omega
σ+jω is given a new name “
s
s
s”, which we often substitute as “
j
ω
j\omega
jω” for the sinusoidal signal response of causal LTI (Linear Time-Invariant) systems. In the
s
s
s-plane, if the ROC of a Laplace transform covers the imaginary axis, then its Fourier Transform will always exist, since the signal will converge. It is these signals on the imaginary axis which comprise periodic signals
e
j
ω
t
=
cos
ω
t
+
j
sin
ω
t
e^{j\omega t} = \cos \omega t + j \sin \omega t
ejωt=cosωt+jsinωt (By Euler’s formula).
拉普拉斯变换可以被视为连续时间傅里叶变换(CTFT)的超集。你看,在收敛域(ROC)内,如果传递函数的根位于虚轴上,即对于
s
=
σ
+
j
ω
s = \sigma + j\omega
s=σ+jω,
σ
=
0
\sigma = 0
σ=0,如前面评论中提到的,拉普拉斯变换就简化为连续时间傅里叶变换(CTFT)。稍微回顾一下,了解拉普拉斯变换最初是如何产生的——当时我们已经有了傅里叶变换——会很有帮助。你看,函数(信号)的收敛是傅里叶变换存在的必要条件(绝对可和),但物理世界中也存在无法收敛的信号。不过,由于分析这些信号很有必要,我们通过给它们乘以一个单调递减的指数
e
−
σ
t
e^{-\sigma t}
e−σt 使其收敛,这种指数的本质就是让信号收敛。这个新的
σ
+
j
ω
\sigma + j\omega
σ+jω 被命名为“
s
s
s”,在分析因果线性时不变(LTI)系统的正弦信号响应时,我们常将其替换为“
j
ω
j\omega
jω”。在
s
s
s 平面中,如果拉普拉斯变换的收敛域(ROC)覆盖虚轴,那么它的傅里叶变换一定存在,因为此时信号是收敛的。正是虚轴上的这些信号构成了周期信号,即
e
j
ω
t
=
cos
ω
t
+
j
sin
ω
t
e^{j\omega t} = \cos \omega t + j \sin \omega t
ejωt=cosωt+jsinωt(根据欧拉公式)。
Much in the same way, Z-transform is an extension of DTFT (Discrete-Time Fourier Transform) to, first, make them converge, and second, to make our lives a lot easier. It’s easy to deal with a
z
z
z than with a
e
j
ω
e^{j\omega}
ejω (setting
r
r
r, the radius of the ROC circle, as unity).
同样地,Z 变换是离散时间傅里叶变换(DTFT)的扩展,扩展的目的一是让信号收敛,二是让分析过程更简便。处理
z
z
z 比处理
e
j
ω
e^{j\omega}
ejω 更简单(只需将收敛域(ROC)圆的半径
r
r
r 设为 1 即可)。
Also, you are more likely to use a Fourier Transform than a Laplace transform for non-causal signals, because Laplace transforms make analysis much easier when used as unilateral (one-sided) transforms. You could use them on two-sided signals too, and the result will be the same with some mathematical variations.
此外,对于非因果信号,你更可能使用傅里叶变换而非拉普拉斯变换,因为拉普拉斯变换作为单边变换使用时,能让分析过程简便很多。你也可以将拉普拉斯变换用于双边信号,虽然数学形式会有一些差异,但结果本质上是相同的。
edited Sep 15, 2020 at 6:20
Rachit Jain
answered Oct 30, 2013 at 11:21
Anshul
Comment Supplement 2: Positive Feedback on Answer 2
评论补充 2:对回答 2 的肯定反馈
- Your answer is a savior… Thumbs up for such a precise and great explanation.
你的回答是救星……为如此精确和精彩的解释点赞。
– Pravin Poudel
Commented Sep 5, 2018 at 4:39
Answer 3: Concise Distinction of Transform Application Domains (user16222)
回答 3:简洁区分变换的应用域(user16222)
Fourier transforms are for converting/representing a time-varying function in the frequency domain.
傅里叶变换用于将时变函数转换/表示到频域中。
A Laplace transform is for converting/representing a time-varying function in the “s-domain” (not “integral domain”).
拉普拉斯变换用于将时变函数转换/表示到“s 域”(非“积分域”)中。
Z-transforms are very similar to Laplace transforms but are discrete-time interval transforms, which are more suitable for digital implementations.
Z 变换与拉普拉斯变换非常相似,但它是离散时间间隔的变换,更适合数字领域的实现。
They all appear the same because the methods used to convert them are very similar.
它们看起来都一样,因为转换它们所使用的方法非常相似。
answered Oct 25, 2013 at 14:38
user16222
Answer 4: Circuit Example to Distinguish Laplace & Fourier (jfasoulas)
回答 4:电路实例区分拉普拉斯与傅里叶(jfasoulas)
I will try to explain the difference between Laplace and Fourier transformations with an example based on electric circuits. Assume we have a system described by a known differential equation, say a common RLC circuit. Also assume a common switch is used to turn the circuit ON or OFF. Now, if we want to study the circuit in the sinusoidal steady state, we have to use the Fourier transform. Otherwise, if our analysis includes turning the circuit ON or OFF, we have to apply the Laplace transformation to the differential equations.
我将尝试用一个基于电路的例子来解释拉普拉斯变换和傅里叶变换的区别。假设我们有一个由已知微分方程描述的系统,比如一个常见的 RLC 电路。还假设使用一个常见的开关来打开或关闭电路。现在,如果我们想研究电路的正弦稳态,就必须使用傅里叶变换。否则,如果分析涉及打开或关闭电路,就必须对微分方程应用拉普拉斯变换。
In other words, the Laplace transformation is used to study the transient evolution of the system´s response from the initial state to the final sinusoidal steady state. It includes not only the transient phenomenon from the initial state of the system but also the final sinusoidal steady state.
换句话说,拉普拉斯变换用于研究系统响应从初始状态到最终正弦稳态的瞬态演变。它不仅包含系统初始状态的瞬态现象,还包含最终的正弦稳态。
edited May 23, 2017 at 21:47
Voltage Spike♦
answered May 23, 2017 at 20:24
jfasoulas
场景数学模型简化
一、拉普拉斯变换应用场景模型
场景 1:连续时间系统瞬态分析(RLC 串联电路暂态)
场景描述
RLC 串联电路(电阻 R R R、电感 L L L、电容 C C C)接直流电压源 U U U, t = 0 t = 0 t=0 时刻开关闭合,分析电容电压 u C ( t ) u_C(t) uC(t) 的暂态变化。
简化假设
- 电路元件为理想元件( R R R、 L L L、 C C C 参数恒定,无损耗);
- 初始时刻电容无电荷( u C ( 0 − ) = 0 u_C(0^-) = 0 uC(0−)=0)、电感无电流( i L ( 0 − ) = 0 i_L(0^-) = 0 iL(0−)=0);
- 电压源 U U U 为恒定直流,开关闭合后无波动。
数学建模步骤
-
列写时域微分方程:
根据基尔霍夫电压定律(KVL),电路总电压满足:
U = R i ( t ) + L d i ( t ) d t + u C ( t ) U = Ri(t) + L\frac{di(t)}{dt} + u_C(t) U=Ri(t)+Ldtdi(t)+uC(t)
又因电容电流 i ( t ) = C d u C ( t ) d t i(t) = C\frac{du_C(t)}{dt} i(t)=CdtduC(t),代入上式得:
L C d 2 u C ( t ) d t 2 + R C d u C ( t ) d t + u C ( t ) = U LC \frac{d^2 u_C(t)}{dt^2} + RC \frac{du_C(t)}{dt} + u_C(t) = U LCdt2d2uC(t)+RCdtduC(t)+uC(t)=U
-
拉普拉斯变换(单边, t ≥ 0 t \geq 0 t≥0):
对微分方程两边做拉普拉斯变换,利用变换性质 L { d n f ( t ) d t n } = s n F ( s ) − ∑ k = 0 n − 1 s n − 1 − k f ( k ) ( 0 − ) \mathcal{L}\{\frac{d^n f(t)}{dt^n}\} = s^n F(s) - \sum_{k=0}^{n-1} s^{n-1-k} f^{(k)}(0^-) L{dtndnf(t)}=snF(s)−∑k=0n−1sn−1−kf(k)(0−)。结合初始条件 u C ( 0 − ) = 0 u_C(0^-) = 0 uC(0−)=0 和 i L ( 0 − ) = 0 i_L(0^-) = 0 iL(0−)=0(即 u C ′ ( 0 − ) = i L ( 0 − ) C = 0 u_C'(0^-) = \frac{i_L(0^-)}{C} = 0 uC′(0−)=CiL(0−)=0,电感初始电流为零,从而导致电容电压的初始变化率也为零。),可得:
L C s 2 U C ( s ) − L C s u C ( 0 − ) − L C u C ′ ( 0 − ) + R C s U C ( s ) − R C u C ( 0 − ) + U C ( s ) = U s LC s^2 U_C(s) - LC s u_C(0^-) - LC u_C'(0^-) + RC s U_C(s) - RC u_C(0^-) + U_C(s) = \frac{U}{s} LCs2UC(s)−LCsuC(0−)−LCuC′(0−)+RCsUC(s)−RCuC(0−)+UC(s)=sU
代入初始条件 u C ( 0 − ) = 0 u_C(0^-) = 0 uC(0−)=0 和 u C ′ ( 0 − ) = 0 u_C'(0^-) = 0 uC′(0−)=0,得:
L C s 2 U C ( s ) + R C s U C ( s ) + U C ( s ) = U s LC s^2 U_C(s) + RC s U_C(s) + U_C(s) = \frac{U}{s} LCs2UC(s)+RCsUC(s)+UC(s)=sU
-
求解频域表达式并反变换:
整理得电容电压的拉普拉斯域表达式:
U C ( s ) = U s ( L C s 2 + R C s + 1 ) U_C(s) = \frac{U}{s(LC s^2 + RC s + 1)} UC(s)=s(LCs2+RCs+1)U
通过部分分式分解(例如在欠阻尼情况,即 R < 2 L C R < 2\sqrt{\frac{L}{C}} R<2CL),反变换后可得到时域暂态解:
u C ( t ) = U [ 1 − e − α t ( cos ( ω d t ) + α ω d sin ( ω d t ) ) ] u_C(t) = U \left[1 - e^{-\alpha t} \left(\cos(\omega_d t) + \frac{\alpha}{\omega_d} \sin(\omega_d t)\right)\right] uC(t)=U[1−e−αt(cos(ωdt)+ωdαsin(ωdt))]
其中 α = R 2 L \alpha = \frac{R}{2L} α=2LR(衰减系数), ω d = 1 L C − α 2 \omega_d = \sqrt{\frac{1}{LC} - \alpha^2} ωd=LC1−α2(阻尼振荡角频率)。
场景 2:连续系统设计(PID 控制器参数设计)
场景描述
温度控制系统(被控对象为加热炉,输入为加热功率,输出为炉内温度),用 PID 控制器调节温度至设定值 T 0 T_0 T0。
简化假设
- 被控对象(加热炉)近似为一阶惯性系统,传递函数 G ( s ) = K T s + 1 G(s) = \frac{K}{T s + 1} G(s)=Ts+1K( K K K 为增益, T T T 为时间常数);
- PID 控制器为理想类型(无死区、无饱和);
- 系统为单位负反馈结构。
数学建模步骤
-
PID 控制器传递函数:
理想 PID 控制器的时域输入输出关系为 u ( t ) = K p e ( t ) + K i ∫ 0 t e ( τ ) d τ + K d d e ( t ) d t u(t) = K_p e(t) + K_i \int_{0}^{t} e(\tau) d\tau + K_d \frac{de(t)}{dt} u(t)=Kpe(t)+Ki∫0te(τ)dτ+Kddtde(t)(其中 e ( t ) = T 0 − T ( t ) e(t) = T_0 - T(t) e(t)=T0−T(t) 为温度偏差),拉普拉斯变换后得传递函数:
G P I D ( s ) = K p + K i s + K d s = K d s 2 + K p s + K i s G_{PID}(s) = K_p + \frac{K_i}{s} + K_d s = \frac{K_d s^2 + K_p s + K_i}{s} GPID(s)=Kp+sKi+Kds=sKds2+Kps+Ki
-
系统开环传递函数:
在单位负反馈下,开环传递函数为控制器与被控对象传递函数的乘积:
G o p e n ( s ) = G P I D ( s ) ⋅ G ( s ) = K d s 2 + K p s + K i s ⋅ K T s + 1 G_{open}(s) = G_{PID}(s) \cdot G(s) = \frac{K_d s^2 + K_p s + K_i}{s} \cdot \frac{K}{T s + 1} Gopen(s)=GPID(s)⋅G(s)=sKds2+Kps+Ki⋅Ts+1K
-
参数设计依据:
通过拉普拉斯域的极点/零点配置(如使系统开环极点满足稳定判据),或分析系统阶跃响应(如超调量、调节时间),确定 K p K_p Kp(比例系数)、 K i K_i Ki(积分系数)、 K d K_d Kd(微分系数)。例如,若要求超调量 <5%、调节时间 <10s,可通过试凑法或根轨迹法等方法优化参数。
二、傅里叶变换应用场景模型
场景 1:连续信号频率分析(语音信号频谱提取)
场景描述
提取简单语音信号(如单音“啊”)的频率成分,分析其主要谐波分布。
简化假设
- 语音信号近似为周期正弦波叠加(忽略噪声,仅保留基波与前 3 次谐波);
- 信号为实信号,满足傅里叶变换的共轭对称性( F ( − ω ) = F ∗ ( ω ) F(-\omega) = F^*(\omega) F(−ω)=F∗(ω));
- 信号持续时间足够长,可视为稳态信号,且满足绝对可积条件。
数学建模步骤
-
时域信号简化表达式:
设语音信号时域表达式为基波与谐波叠加:
f ( t ) = A 0 + A 1 cos ( ω 0 t ) + A 2 cos ( 2 ω 0 t ) + A 3 cos ( 3 ω 0 t ) f(t) = A_0 + A_1 \cos(\omega_0 t) + A_2 \cos(2\omega_0 t) + A_3 \cos(3\omega_0 t) f(t)=A0+A1cos(ω0t)+A2cos(2ω0t)+A3cos(3ω0t)
其中 A 0 A_0 A0 为直流分量(通常语音信号的直流分量可忽略, A 0 ≈ 0 A_0 \approx 0 A0≈0), ω 0 = 2 π f 0 \omega_0 = 2\pi f_0 ω0=2πf0( f 0 f_0 f0 为基波频率,如男性语音基波 f 0 ≈ 100 − 200 Hz f_0 \approx 100-200\text{Hz} f0≈100−200Hz,女性 ≈ 200 − 300 Hz \approx 200-300\text{Hz} ≈200−300Hz), A 1 A_1 A1、 A 2 A_2 A2、 A 3 A_3 A3 为各次谐波振幅。
-
傅里叶变换求解频谱:
利用傅里叶变换的基本对 F { cos ( ω 0 t ) } = π [ δ ( ω − ω 0 ) + δ ( ω + ω 0 ) ] \mathcal{F}\{\cos(\omega_0 t)\} = \pi [\delta(\omega - \omega_0) + \delta(\omega + \omega_0)] F{cos(ω0t)}=π[δ(ω−ω0)+δ(ω+ω0)](其中 δ \delta δ 为冲激函数),对 f ( t ) f(t) f(t) 做变换得:
F ( ω ) = A 0 2 π δ ( ω ) + π A 1 [ δ ( ω − ω 0 ) + δ ( ω + ω 0 ) ] + π A 2 [ δ ( ω − 2 ω 0 ) + δ ( ω + 2 ω 0 ) ] + π A 3 [ δ ( ω − 3 ω 0 ) + δ ( ω + 3 ω 0 ) ] F(\omega) = A_0 2\pi \delta(\omega) + \pi A_1 [\delta(\omega - \omega_0) + \delta(\omega + \omega_0)] + \pi A_2 [\delta(\omega - 2\omega_0) + \delta(\omega + 2\omega_0)] + \pi A_3 [\delta(\omega - 3\omega_0) + \delta(\omega + 3\omega_0)] F(ω)=A02πδ(ω)+πA1[δ(ω−ω0)+δ(ω+ω0)]+πA2[δ(ω−2ω0)+δ(ω+2ω0)]+πA3[δ(ω−3ω0)+δ(ω+3ω0)]
-
频谱分析结论:
在频域中, F ( ω ) F(\omega) F(ω) 表现为在 ω = 0 , ± ω 0 , ± 2 ω 0 , ± 3 ω 0 \omega = 0, \pm\omega_0, \pm2\omega_0, \pm3\omega_0 ω=0,±ω0,±2ω0,±3ω0 处的冲激,冲激强度与各次谐波振幅成正比。通过分析这些冲激的位置和强度,可以直接读取语音信号的主要频率成分(如基波 f 0 = 150 Hz f_0=150\text{Hz} f0=150Hz,2 次谐波 300 Hz 300\text{Hz} 300Hz 等)。
场景 2:通信与信号滤波(AM 调制信号设计)
场景描述
将低频基带信号(如音频信号, f ≤ 20 kHz f \leq 20\text{kHz} f≤20kHz)通过调幅(AM)映射到高频载波(如无线电广播载波, f c ≈ 530 kHz − 1.6 MHz f_c \approx 530\text{kHz}-1.6\text{MHz} fc≈530kHz−1.6MHz),以便于远距离传输。
简化假设
- 基带信号为单频正弦信号(简化分析,实际为多频叠加);
- 调制过程为“双边带调幅”(保留载波分量,非抑制载波);
- 载波与基带信号频率满足 f c ≫ f_c \gg fc≫ 基带信号最高频率(避免频谱混叠)。
数学建模步骤
-
定义输入信号:
- 基带信号(音频): f ( t ) = A m cos ( ω m t ) f(t) = A_m \cos(\omega_m t) f(t)=Amcos(ωmt),其中 ω m = 2 π f m \omega_m = 2\pi f_m ωm=2πfm( f m f_m fm 为基带频率,如 f m = 1 kHz f_m=1\text{kHz} fm=1kHz), A m A_m Am 为基带振幅;
- 载波信号: c ( t ) = A c cos ( ω c t ) c(t) = A_c \cos(\omega_c t) c(t)=Accos(ωct),其中 ω c = 2 π f c \omega_c = 2\pi f_c ωc=2πfc( f c f_c fc 为载波频率,如 f c = 1 MHz f_c=1\text{MHz} fc=1MHz), A c A_c Ac 为载波振幅。
-
AM 调制信号时域表达式:
标准双边带调幅带载波信号的表达式为 s A M ( t ) = [ A c + k a f ( t ) ] cos ( ω c t ) s_{AM}(t) = [A_c + k_a f(t)] \cos(\omega_c t) sAM(t)=[Ac+kaf(t)]cos(ωct),其中 k a k_a ka 为调幅系数。为简化分析频谱,采用乘积形式,并假设基带信号经过处理,使其直流分量为1,以模拟带载波的AM信号:
s A M ( t ) = A c [ 1 + m cos ( ω m t ) ] cos ( ω c t ) = A c cos ( ω c t ) + m A c cos ( ω m t ) cos ( ω c t ) s_{AM}(t) = A_c [1+m \cos(\omega_m t)] \cos(\omega_c t) = A_c \cos(\omega_c t) + m A_c \cos(\omega_m t) \cos(\omega_c t) sAM(t)=Ac[1+mcos(ωmt)]cos(ωct)=Accos(ωct)+mAccos(ωmt)cos(ωct)
其中 m m m 为调幅指数( m ≤ 1 m \le 1 m≤1)。
-
傅里叶变换分析频域特性:
利用三角恒等式 cos A cos B = 1 2 [ cos ( A + B ) + cos ( A − B ) ] \cos A \cos B = \frac{1}{2}[\cos(A+B) + \cos(A-B)] cosAcosB=21[cos(A+B)+cos(A−B)],对 s A M ( t ) s_{AM}(t) sAM(t) 做傅里叶变换:
S A M ( ω ) = F { A c cos ( ω c t ) + m A c 2 [ cos ( ( ω c + ω m ) t ) + cos ( ( ω c − ω m ) t ) ] } S_{AM}(\omega) = \mathcal{F}\left\{ A_c \cos(\omega_c t) + \frac{m A_c}{2} [\cos((\omega_c + \omega_m)t) + \cos((\omega_c - \omega_m)t)] \right\} SAM(ω)=F{Accos(ωct)+2mAc[cos((ωc+ωm)t)+cos((ωc−ωm)t)]}
S A M ( ω ) = π A c [ δ ( ω − ω c ) + δ ( ω + ω c ) ] + π m A c 2 [ δ ( ω − ( ω c + ω m ) ) + δ ( ω + ( ω c + ω m ) ) + δ ( ω − ( ω c − ω m ) ) + δ ( ω + ( ω c − ω m ) ) ] S_{AM}(\omega) = \pi A_c [\delta(\omega - \omega_c) + \delta(\omega + \omega_c)] + \frac{\pi m A_c}{2} \left[ \delta(\omega - (\omega_c + \omega_m)) + \delta(\omega + (\omega_c + \omega_m)) + \delta(\omega - (\omega_c - \omega_m)) + \delta(\omega + (\omega_c - \omega_m)) \right] SAM(ω)=πAc[δ(ω−ωc)+δ(ω+ωc)]+2πmAc[δ(ω−(ωc+ωm))+δ(ω+(ωc+ωm))+δ(ω−(ωc−ωm))+δ(ω+(ωc−ωm))]
即基带信号频谱被“搬移”到载波频率 ± ω c \pm\omega_c ±ωc 附近,形成“上边带”( ω c + ω m \omega_c + \omega_m ωc+ωm)和“下边带”( ω c − ω m \omega_c - \omega_m ωc−ωm),同时保留了载波分量,这符合标准 AM 调制的频域特征。
三、Z 变换应用场景模型
场景 1:离散时间系统分析(LED 流水灯时序)
场景描述
5 个 LED 灯(编号 1-5)按“1→2→3→4→5→1”顺序循环点亮,每个灯点亮 1 个采样周期 T T T(如 T = 1 s T=1s T=1s),用 Z 变换分析 LED 点亮状态的离散序列。
简化假设
- 每个采样时刻仅 1 个 LED 点亮(状态为 1),其余为熄灭(状态为 0);
- 系统为因果离散系统( n < 0 n<0 n<0 时无输出,仅在 n = 0 , 1 , 2 , . . . n=0,1,2,... n=0,1,2,... 时刻有状态);
- 循环周期固定(5 个采样周期完成一次循环),无时序偏差。
数学建模步骤
-
定义离散状态序列:
设 n n n 为采样时刻( n = 0 , 1 , 2 , . . . n=0,1,2,... n=0,1,2,...), x [ n ] x[n] x[n] 为 LED 点亮状态。为简化分析,我们仅关注“第 1 个 LED”的点亮时序,状态 1 表示点亮,0 表示熄灭:
f [ n ] = { 1 , 当 n = 0 , 5 , 10 , . . . (即 n = 5 k , 其中 k 为非负整数) 0 , 其他 n f[n] = \begin{cases} 1, & \text{当 } n=0,5,10,...(\text{即 } n=5k, \text{其中 } k \text{ 为非负整数}) \\ 0, & \text{其他 } n \end{cases} f[n]={1,0,当 n=0,5,10,...(即 n=5k,其中 k 为非负整数)其他 n
-
Z 变换求解频域特性:
根据 Z 变换定义 Z { f [ n ] } = F ( z ) = ∑ n = − ∞ ∞ f [ n ] z − n \mathcal{Z}\{f[n]\} = F(z) = \sum_{n=-\infty}^{\infty} f[n] z^{-n} Z{f[n]}=F(z)=∑n=−∞∞f[n]z−n。由于 f [ n ] f[n] f[n] 是因果序列( n < 0 n<0 n<0 时为 0),且仅在 n = 5 k n=5k n=5k 时为 1,得:
F ( z ) = ∑ k = 0 ∞ 1 ⋅ z − 5 k = ∑ k = 0 ∞ ( z − 5 ) k F(z) = \sum_{k=0}^{\infty} 1 \cdot z^{-5k} = \sum_{k=0}^{\infty} (z^{-5})^k F(z)=∑k=0∞1⋅z−5k=∑k=0∞(z−5)k
当 ∣ z − 5 ∣ < 1 |z^{-5}| < 1 ∣z−5∣<1(即 ∣ z ∣ > 1 |z| > 1 ∣z∣>1,收敛域 ROC 为 Z 平面单位圆外)时,等比级数收敛,求和得:
F ( z ) = 1 1 − z − 5 = z 5 z 5 − 1 F(z) = \frac{1}{1 - z^{-5}} = \frac{z^5}{z^5 - 1} F(z)=1−z−51=z5−1z5
-
时序分析结论:
对 F ( z ) F(z) F(z) 进行 Z 反变换,可以还原离散序列 f [ n ] f[n] f[n],从而验证第 1 个 LED 的点亮周期(每 5 个采样时刻点亮一次)。同理,其他 LED 的时序也可以通过 Z 变换分析,例如第 2 个 LED 的序列可以表示为 f [ n − 1 ] f[n-1] f[n−1](表示序列的延迟),其 Z 变换为 z − 1 F ( z ) z^{-1}F(z) z−1F(z),这有助于实现流水灯时序的整体设计和验证。
场景 2:数字信号处理(FIR 数字滤波器设计)
场景描述
设计一个 2 阶 FIR(有限长单位脉冲响应)低通滤波器,用于滤除数字信号中的高频噪声(如采样频率 f s = 1 kHz f_s=1\text{kHz} fs=1kHz,截止频率 f c = 200 Hz f_c=200\text{Hz} fc=200Hz),保留低频有效信号。
简化假设
- 滤波器为线性相位 FIR(单位脉冲响应 h [ n ] h[n] h[n] 为实序列且满足 h [ n ] = h [ N − 1 − n ] h[n] = h[N-1-n] h[n]=h[N−1−n],其中 N N N 为滤波器长度,即抽头数。此处 N = 3 N=3 N=3,对应 h [ 0 ] , h [ 1 ] , h [ 2 ] h[0], h[1], h[2] h[0],h[1],h[2]);
- 输入数字信号为低频信号叠加高频噪声(例如输入 x [ n ] = sin ( 2 π f 1 n T s ) + 0.5 sin ( 2 π f 2 n T s ) x[n] = \sin(2\pi f_1 n T_s) + 0.5 \sin(2\pi f_2 n T_s) x[n]=sin(2πf1nTs)+0.5sin(2πf2nTs), f 1 = 50 Hz f_1=50\text{Hz} f1=50Hz 为有效信号, f 2 = 600 Hz f_2=600\text{Hz} f2=600Hz 为噪声, T s = 1 / f s = 1 ms T_s=1/f_s=1\text{ms} Ts=1/fs=1ms);
- 滤波器有延迟(线性相位 FIR 滤波器通常有固定延迟,此处修正说明)。
数学建模步骤
-
确定单位脉冲响应 h [ n ] h[n] h[n]:
对于 2 阶 FIR 低通滤波器,基于矩形窗设计(为简化模型),其单位脉冲响应系数可设定为:
h [ 0 ] = h [ 2 ] = K ⋅ f c f s h[0] = h[2] = K \cdot \frac{f_c}{f_s} h[0]=h[2]=K⋅fsfc
h [ 1 ] = K ⋅ 2 ⋅ f c f s h[1] = K \cdot 2 \cdot \frac{f_c}{f_s} h[1]=K⋅2⋅fsfc
此处 K K K 为归一化系数,为了方便计算增益,我们取 K = 1 K=1 K=1。则有:
h [ 0 ] = h [ 2 ] = 200 1000 = 0.2 h[0] = h[2] = \frac{200}{1000} = 0.2 h[0]=h[2]=1000200=0.2
h [ 1 ] = 2 ⋅ 200 1000 = 0.4 h[1] = 2 \cdot \frac{200}{1000} = 0.4 h[1]=2⋅1000200=0.4
这些系数满足线性相位条件 h [ n ] = h [ 2 − n ] h[n]=h[2-n] h[n]=h[2−n]。
-
Z 变换求滤波器传递函数:
根据 Z 变换定义,滤波器的 Z 域传递函数为:
H ( z ) = Z { h [ n ] } = h [ 0 ] + h [ 1 ] z − 1 + h [ 2 ] z − 2 H(z) = \mathcal{Z}\{h[n]\} = h[0] + h[1] z^{-1} + h[2] z^{-2} H(z)=Z{h[n]}=h[0]+h[1]z−1+h[2]z−2
代入系数得:
H ( z ) = 0.2 + 0.4 z − 1 + 0.2 z − 2 H(z) = 0.2 + 0.4 z^{-1} + 0.2 z^{-2} H(z)=0.2+0.4z−1+0.2z−2
整理为多项式形式:
H ( z ) = 0.2 ⋅ z 2 + 2 z + 1 z 2 = 0.2 ⋅ ( z + 1 ) 2 z 2 H(z) = 0.2 \cdot \frac{z^2 + 2 z + 1}{z^2} = 0.2 \cdot \frac{(z + 1)^2}{z^2} H(z)=0.2⋅z2z2+2z+1=0.2⋅z2(z+1)2
-
滤波效果验证(频域分析):
令 z = e j ω T s z = e^{j\omega T_s} z=ejωTs(Z 平面单位圆,对应离散时间傅里叶变换 DTFT),其中 ω = 2 π f \omega = 2\pi f ω=2πf,代入可得频率响应:
H ( e j ω T s ) = 0.2 + 0.4 e − j ω T s + 0.2 e − j 2 ω T s H(e^{j\omega T_s}) = 0.2 + 0.4 e^{-j\omega T_s} + 0.2 e^{-j2\omega T_s} H(ejωTs)=0.2+0.4e−jωTs+0.2e−j2ωTs
= 0.2 e − j ω T s ( e j ω T s + 2 + e − j ω T s ) = 0.2 e^{-j\omega T_s} (e^{j\omega T_s} + 2 + e^{-j\omega T_s}) =0.2e−jωTs(ejωTs+2+e−jωTs)
= 0.2 e − j ω T s ( 2 + 2 cos ( ω T s ) ) = 0.2 e^{-j\omega T_s} (2 + 2 \cos(\omega T_s)) =0.2e−jωTs(2+2cos(ωTs))
= 0.4 e − j ω T s ( 1 + cos ( ω T s ) ) = 0.4 e^{-j\omega T_s} (1 + \cos(\omega T_s)) =0.4e−jωTs(1+cos(ωTs))
利用 1 + cos ( 2 θ ) = 2 cos 2 ( θ ) 1 + \cos(2\theta) = 2\cos^2(\theta) 1+cos(2θ)=2cos2(θ),则 1 + cos ( ω T s ) = 2 cos 2 ( ω T s 2 ) 1 + \cos(\omega T_s) = 2\cos^2(\frac{\omega T_s}{2}) 1+cos(ωTs)=2cos2(2ωTs),可得:
H ( e j ω T s ) = 0.4 e − j ω T s ( 2 cos 2 ( ω T s 2 ) ) = 0.8 cos 2 ( ω T s 2 ) e − j ω T s H(e^{j\omega T_s}) = 0.4 e^{-j\omega T_s} \left(2\cos^2\left(\frac{\omega T_s}{2}\right)\right) = 0.8 \cos^2\left(\frac{\omega T_s}{2}\right) e^{-j\omega T_s} H(ejωTs)=0.4e−jωTs(2cos2(2ωTs))=0.8cos2(2ωTs)e−jωTs
计算幅频特性(幅度响应):
∣ H ( e j ω T s ) ∣ = ∣ 0.8 cos 2 ( ω T s 2 ) e − j ω T s ∣ = 0.8 ∣ cos 2 ( ω T s 2 ) ∣ |H(e^{j\omega T_s})| = \left|0.8 \cos^2\left(\frac{\omega T_s}{2}\right) e^{-j\omega T_s}\right| = 0.8 \left|\cos^2\left(\frac{\omega T_s}{2}\right)\right| ∣H(ejωTs)∣= 0.8cos2(2ωTs)e−jωTs =0.8 cos2(2ωTs)
由于 cos 2 ( ⋅ ) \cos^2(\cdot) cos2(⋅) 总是非负的,所以
∣ H ( e j ω T s ) ∣ = 0.8 cos 2 ( ω T s 2 ) |H(e^{j\omega T_s})| = 0.8 \cos^2\left(\frac{\omega T_s}{2}\right) ∣H(ejωTs)∣=0.8cos2(2ωTs)
-
对有效信号 f 1 = 50 Hz f_1=50\text{Hz} f1=50Hz: ω T s = 2 π × 50 × 0.001 = 0.1 π \omega T_s = 2\pi \times 50 \times 0.001 = 0.1\pi ωTs=2π×50×0.001=0.1π。
∣ H ∣ = 0.8 cos 2 ( 0.05 π ) ≈ 0.8 × ( 0.99 ) 2 ≈ 0.784 |H| = 0.8 \cos^2(0.05\pi) \approx 0.8 \times (0.99)^2 \approx 0.784 ∣H∣=0.8cos2(0.05π)≈0.8×(0.99)2≈0.784
(衰减较小,信号得到保留)。
-
对噪声 f 2 = 600 Hz f_2=600\text{Hz} f2=600Hz: ω T s = 2 π × 600 × 0.001 = 1.2 π \omega T_s = 2\pi \times 600 \times 0.001 = 1.2\pi ωTs=2π×600×0.001=1.2π。
∣ H ∣ = 0.8 cos 2 ( 0.6 π ) = 0.8 cos 2 ( 10 8 ∘ ) ≈ 0.8 × ( − 0.309 ) 2 ≈ 0.8 × 0.095 ≈ 0.076 |H| = 0.8 \cos^2(0.6\pi) = 0.8 \cos^2(108^\circ) \approx 0.8 \times (-0.309)^2 \approx 0.8 \times 0.095 \approx 0.076 ∣H∣=0.8cos2(0.6π)=0.8cos2(108∘)≈0.8×(−0.309)2≈0.8×0.095≈0.076
(衰减较大,噪声被有效滤除)。
符合低通滤波器的设计需求。
-
via:
-
Comparison to Fourier Transform, Laplace Transform and Z Transform | Phillweston Blog
https://docs.phillweston.com/article/comparison-to-fourier-transform-laplace-transform-and-z-transform -
Relation and difference between Fourier, Laplace and Z transforms - Electrical Engineering Stack Exchange
https://electronics.stackexchange.com/questions/86489/relation-and-difference-between-fourier-laplace-and-z-transforms -
常用傅立叶变换表 +常用信号拉普拉斯变换+常用Z变换(性质) - 知乎
https://zhuanlan.zhihu.com/p/663658746 -
unrecorded……
2万+

被折叠的 条评论
为什么被折叠?



