一个字符串删除几个字符后,形成最长回文字符子串/寻找一个字符串的最长回文字符子串(不一定连续)
法一:O(n^3)
dp[i][j]:[i,j]区间的最长字符子串
dp[i][j]=max{ dp[i][j-1],dp[k][j-1]+2 | i-1<=k<=j&&s[k-1]==s[j] }
这个dp的决策在于为第j个字符寻找匹配字符。所以需要遍历[i,j]区间所有字符。
#include<stdio.h>
#include<iostream>
#include<string.h>
#include<algorithm>
#include<vector>
#include<queue>
#include<math.h>
#define ll long long
#define sf scanf
#define pf printf
#define INF 1<<29
#define mem(a,b) memset(a,b,sizeof(a))
#define lowbit(x) x&(-x)
#define maxn 1100
#define maxm 100010
const ll mol=1000000007;
using namespace std;
char s[maxn];
int dp[maxn][maxn],prea[maxn][maxn],preb[maxn][maxn];
void print(int a,int b){
if(a>b) return;
int x=prea[a][b],y=preb[a][b];
printf("%c",s[x]);
print(x+1,y-1);
if(x!=y) printf("%c",s[y]);
}
int main(){
//freopen("a.txt","r",stdin);
while(scanf("%s",s+1)!=EOF){
int n=strlen(s+1);
mem(dp,0);
for(int i=1;i<=n;i++){
prea[i][i]=preb[i][i]=i;
for(int j=i;j<=n;j++){
dp[i][j]=1;
}
}
for(int l=1;l<=n-1;l++){
for(int i=1;i+l<=n;i++){
int j=i+l,tmp=-1;
for(int k=i;k<=j-1;k++) if(s[k]==s[j]) { tmp=k;break; }
if(tmp!=-1){//s[j]与前面构成对偶字符
dp[i][j]=dp[tmp+1][j-1]+2,prea[i][j]=tmp,preb[i][j]=j;//[i,j]区间的最长回文串的第一个和最后一个选择
if(dp[i][j]<dp[i][j-1]){
dp[i][j]=dp[i][j-1],prea[i][j]=prea[i][j-1],preb[i][j]=preb[i][j-1];
}
if(dp[i][j]==dp[i][j-1]&&s[prea[i][j-1]]<s[prea[i][j]]){
prea[i][j]=prea[i][j-1],preb[i][j]=preb[i][j-1];
}
}
else{//dp[i][j]仍为1
if(dp[i][j]<dp[i][j-1]){
dp[i][j]=dp[i][j-1],prea[i][j]=prea[i][j-1],preb[i][j]=preb[i][j-1];
}
else if(dp[i][j]==dp[i][j-1]){
if(s[prea[i][j-1]]>s[j]) prea[i][j]=preb[i][j]=j;
else { prea[i][j]=prea[i][j-1],preb[i][j]=preb[i][j-1]; }
}
}
}
}
print(1,n);
printf("\n");
}
}
法二:O(n^2)
s[i]!=s[j]:dp[i][j]=max{ dp[i+1][j],dp[i][j-1]}
s[i]==s[j]:dp[i][j]=dp[i+1][j-1]+2
每次选择时,只比较首尾字符,如果首尾不等,采取分别缩进,取最大值的策略
法三:O(n^2)
结论:将字符串取反后求LCS,取前半段*2(注意奇偶分类)即可得到最长回文子序列