求凸包的周长, 注意n=1 , 2时特殊情况
int cmp(double x){
if(fabs(x) < 1e-8) return 0 ;
if(x > 0) return 1 ;
return -1 ;
}
struct point{
double x , y ;
point(){}
point(double _x , double _y):x(_x) , y(_y){}
friend bool operator == (const point &a , const point &b){
return cmp(a.x - b.x) == 0 && cmp(a.y - b.y) == 0 ;
}
friend double operator ^ (const point &a , const point &b){
return a.x * b.y - a.y * b.x ;
}
friend double dist(const point &a , const point &b){
return sqrt( (a.x-b.x)*(a.x-b.x) + (a.y-b.y)*(a.y-b.y) ) ;
}
point operator - (point o){
return point(x - o.x , y - o.y) ;
}
};
bool cmpless(const point &a , const point &b){
return cmp(a.x - b.x) < 0
|| cmp(a.x - b.x == 0) && cmp(a.y - b.y) < 0 ;
}
vector<point> convex_hull(vector<point> a){
vector<point> src(2 * a.size() + 5) ;
sort(a.begin() , a.end() , cmpless) ;
a.erase(unique(a.begin() , a.end()) , a.end()) ;
int m = 0 ;
for(int i = 0 ; i < a.size() ; i++){
while(m > 1 && cmp( (src[m-1] - src[m-2]) ^ (a[i] - src[m-2]) ) <= 0)
m-- ;
src[m++] = a[i] ;
}
int k = m ;
for(int i = a.size() - 2 ; i >= 0 ; i--){
while(m > k && cmp( (src[m-1] - src[m-2]) ^ (a[i] - src[m-2])) <= 0)
m-- ;
src[m++] = a[i] ;
}
src.resize(m) ;
if(a.size() > 1) src.resize(m-1) ;
return src ;
}
int main(){
int n , i ;
double ans ;
while(cin>>n && n){
vector<point> lis(n) ;
for(i = 0 ; i < n ; i++)
scanf("%lf%lf" , &lis[i].x , &lis[i].y) ;
if(n == 1) ans = 0.0 ;
else if(n == 2) ans = dist(lis[0] , lis[1]) ;
else{
vector<point> a = convex_hull(lis) ;
ans = 0.0 ;
for(i = 0 ; i < a.size() ; i++)
ans += dist(a[i] , a[(i+1) % a.size()]) ;
}
printf("%.2lf\n" , ans) ;
}
return 0 ;
}
hdu 1348
int cmp(double x){
if(fabs(x) < 1e-8) return 0 ;
if(x > 0) return 1 ;
return -1 ;
}
struct point{
double x , y ;
point(){}
point(double _x , double _y):x(_x) , y(_y){}
friend bool operator == (const point &a , const point &b){
return cmp(a.x - b.x) == 0 && cmp(a.y - b.y) == 0 ;
}
friend double operator ^ (const point &a , const point &b){
return a.x * b.y - a.y * b.x ;
}
friend double dist(const point &a , const point &b){
return sqrt( (a.x-b.x)*(a.x-b.x) + (a.y-b.y)*(a.y-b.y) ) ;
}
point operator - (point o){
return point(x - o.x , y - o.y) ;
}
};
bool cmpless(const point &a , const point &b){
return cmp(a.x - b.x) < 0
|| cmp(a.x - b.x == 0) && cmp(a.y - b.y) < 0 ;
}
vector<point> convex_hull(vector<point> a){
vector<point> src(2 * a.size() + 5) ;
sort(a.begin() , a.end() , cmpless) ;
a.erase(unique(a.begin() , a.end()) , a.end()) ;
int m = 0 ;
for(int i = 0 ; i < a.size() ; i++){
while(m > 1 && cmp( (src[m-1] - src[m-2]) ^ (a[i] - src[m-2]) ) <= 0)
m-- ;
src[m++] = a[i] ;
}
int k = m ;
for(int i = a.size() - 2 ; i >= 0 ; i--){
while(m > k && cmp( (src[m-1] - src[m-2]) ^ (a[i] - src[m-2])) <= 0)
m-- ;
src[m++] = a[i] ;
}
src.resize(m) ;
if(a.size() > 1) src.resize(m-1) ;
return src ;
}
int main(){
int n , i , t , T = 1 ;
double ans , r ;
cin>>t ;
while(t--){
cin>>n>>r ;
vector<point> lis(n) ;
for(i = 0 ; i < n ; i++)
scanf("%lf%lf" , &lis[i].x , &lis[i].y) ;
if(n == 1) ans = 0.0 ;
else if(n == 2) ans = dist(lis[0] , lis[1]) ;
else{
vector<point> a = convex_hull(lis) ;
ans = 0.0 ;
for(i = 0 ; i < a.size() ; i++)
ans += dist(a[i] , a[(i+1) % a.size()]) ;
}
if(T++ != 1) puts("") ;
printf("%.0lf\n" , ans + 2.0 * acos(-1.0) * r) ;
}
return 0 ;
}