转自网上牛人解题报告)
题目大意是输入N,求N^N的最高位数字。1<=N<=1,000,000,000
估计大家看到N的范围就没想法了。
确实N的数字太大,如果想算出结果,即使不溢出也会超时。
题目是这样转化的。
首先用科学计数法来表示 N^N = a*10^x;
比如N = 3; 3^3 = 2.7 * 10^1;
我们要求的最右边的数字就是(int)a,即a的整数部分;
OK, 然后两边同时取以10为底的对数 lg(N^N) = lg(a*10^x) ;
化简 N*lg(N) = lg(a) + x;
继续化 N*lg(N) - x = lg(a)
a = 10^(N*lg(N) - x);
现在就只有x是未知的了,如果能用n来表示x的话,这题就解出来了。
又因为,x是N^N的位数。比如 N^N = 1200 ==> x = 3;
实际上就是 x 就是lg(N^N) 向下取整数,表示为[lg(N^N)]
a = 10^(N*lg(N) - [lg(N^N)]);
然后(int)a 就是答案了。
#include<stdio.h>
#include<math.h>
int main(){
int t;
__int64 s,n;
long double m;
scanf("%d",&t);
while(t--){
scanf("%I64d",&n);
m=n*log10(n+0.0);
m-=(__int64)m;
s=(__int64)pow((long double)10,m);
printf("%I64d\n",s);
}
return 0;
}
long double的范围好像比__int64还要大。