机器学习-有监督学习-分类算法:k-近邻(KNN)算法【多分类】【使用场景: 小数据场景/小样本学习,几千~几万样本】【使用faiss库实现快速计算KNN】

本文详细介绍了K-近邻(KNN)算法,包括KNN的基本概念、距离计算方法、K值选择策略及其特点。通过案例分析了电影分类、鸢尾花识别等应用场景,并探讨了KNN算法的优缺点以及适用场景,强调了K值选择对结果的影响,建议在小数据场景下考虑使用KNN算法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、K-近邻算法简介

1、K-近邻算法(KNN)概念

KNN可以说是最简单的分类算法之一,同时,它也是最常用的分类算法之一,注意KNN算法是有监督学习中的分类算法,它看起来和另一个机器学习算法Kmeans有点像(Kmeans是无监督学习算法),但却是有本质区别的。那么什么是KNN算法呢,接下来我们就来介绍介绍吧。

k-近邻算法:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别。
相似的样本,同一特征的值应该是相近的。
k的取值会影响结果。
就是通过你的"邻居"来判断你属于哪个类别。
如何计算你到你的"邻居"的距离:一般时候,都是使用欧氏距离

KNN的全称是K Nearest Neighbors,意思是K个最近的邻居,从这个名字我们就能看出一些KNN算法的蛛丝马迹了。K个最近邻居,毫无疑问,K的取值肯定是至关重要的。那么最近的邻居又是怎么回事呢?其实啊,KNN的原理就是当预测一个新的值x的时候,根据它距离最近的K个点是什么类别来判断x属于哪个类别。听起来有点绕,还是看看图吧。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值