【BestCoder】#Valentine's Day Round

#2 解方程

Misaki's Kiss again

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 284    Accepted Submission(s): 78


Problem Description
After the Ferries Wheel, many friends hope to receive the Misaki's kiss again,so Misaki numbers them 1,2...N1,N ,if someone's number is M and satisfied the GCD(N,M) equals to N XOR M ,he will be kissed again.

Please help Misaki to find all M(1<=M<=N) .

Note that:
GCD(a,b) means the greatest common divisor of a and b .
A XOR B means A exclusive or B
 

Input
There are multiple test cases.

For each testcase, contains a integets N(0<N<=1010)
 

Output
For each test case,
first line output Case #X:,
second line output k means the number of friends will get a kiss.
third line contains k number mean the friends' number, sort them in ascending and separated by a space between two numbers
 

Sample Input
  
3 5 15
 

Sample Output
  
Case #1: 1 2 Case #2: 1 4 Case #3: 3 10 12 14
Hint
In the third sample, gcd(15,10)=5 and (15 xor 10)=5, gcd(15,12)=3 and (15 xor 12)=3,gcd(15,14)=1 and (15 xor 14)=1
 

Source
Valentine's Day Round

gcd(N,x) = N ^ x;
gcd(N,x) 的结果肯定是N的约数。不妨设为k   那么 k = N^x;  k和x都是已知。 。。。  然后解方程两边   k^N = N^x^N = x;
所以x = N ^ (N的约数)  这个是x的必要条件。。。
因为N的约数不一定是gcd(N,x);

注意点:long long
              重复





#include <cstring>
#include <stdio.h>
#include <string>
#include <iostream>
#include <algorithm>
#include <cmath>
using namespace std;

typedef long long LL;
LL n;

LL gcd(LL x,LL y)
{
    if(y == 0)
        return x;
    return gcd(y,x % y);
}

LL arr[100010];
LL arrnums;
LL nums;
int main()
{
    LL Case = 1;
        freopen("1.txt","r",stdin);
    while(scanf("%I64d",&n) != EOF)
    {
        memset(arr,0,sizeof(arr));
        arrnums = nums = 0;
        LL sq = sqrt((double) n);
        for(LL i=1; i<=sq; i++)
        {
            if(n % i == 0)
            {
                LL x = (i^n);
               // if(x == 0) continue;
                if(1 <= x && x <= n && (n ^ x) == gcd(n,x))
                {
                    arr[arrnums++] = x;
                }

                LL j = n / i;

                x = (j ^ n);
               // if(x == 0) continue;
                if(1 <= x && x <= n &&(n ^ x) == gcd(n,x))
                {
                    arr[arrnums++] = x;
                }
            }


        }

        sort(arr,arr+arrnums);


        for(LL i=0; i<arrnums; i++)
        {
            if(i == 0 || arr[i] != arr[i-1])
            {
                arr[nums++] = arr[i];
            }
        }

        printf("Case #%I64d:\n",Case++);
        printf("%I64d\n",nums);

            for(int i=0; i<nums; i++)
            {
                printf("%I64d",arr[i]);
                if(i != nums -1) printf(" ");
            }

            printf("\n");



    }
}




内容概要:本文系统介绍了算术优化算法(AOA)的基本原理、核心思想及Python实现方法,并通过图像分割的实际案例展示了其应用价值。AOA是一种基于种群的元启发式算法,其核心思想来源于四则运算,利用乘除运算进行全局勘探,加减运算进行局部开发,通过数学优化器加速函数(MOA)和数学优化概率(MOP)动态控制搜索过程,在全局探索与局部开发之间实现平衡。文章详细解析了算法的初始化、勘探与开发阶段的更新策略,并提供了完整的Python代码实现,结合Rastrigin函数进行测试验证。进一步地,以Flask框架搭建前后端分离系统,将AOA应用于图像分割任务,展示了其在实际工程中的可行性与高效性。最后,通过收敛速度、寻优精度等指标评估算法性能,并提出自适应参数调整、模型优化和并行计算等改进策略。; 适合人群:具备一定Python编程基础和优化算法基础知识的高校学生、科研人员及工程技术人员,尤其适合从事人工智能、图像处理、智能优化等领域的从业者;; 使用场景及目标:①理解元启发式算法的设计思想与实现机制;②掌握AOA在函数优化、图像分割等实际问题中的建模与求解方法;③学习如何将优化算法集成到Web系统中实现工程化应用;④为算法性能评估与改进提供实践参考; 阅读建议:建议读者结合代码逐行调试,深入理解算法流程中MOA与MOP的作用机制,尝试在不同测试函数上运行算法以观察性能差异,并可进一步扩展图像分割模块,引入更复杂的预处理或后处理技术以提升分割效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值