POJ1067 取石子游戏(博弈论)

本文探讨了石子游戏的博弈策略,通过分析差值与黄金比例的关系,提供了判断先手输赢的方法,并附带了AC代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

取石子游戏

Time Limit: 1000MS Memory Limit: 10000K
Total Submissions: 36633 Accepted: 12396

Description

有两堆石子,数量任意,可以不同。游戏开始由两个人轮流取石子。游戏规定,每次有两种不同的取法,一是可以在任意的一堆中取走任意多的石子;二是可以在两堆中同时取走相同数量的石子。最后把石子全部取完者为胜者。现在给出初始的两堆石子的数目,如果轮到你先取,假设双方都采取最好的策略,问最后你是胜者还是败者。

Input

输入包含若干行,表示若干种石子的初始情况,其中每一行包含两个非负整数a和b,表示两堆石子的数目,a和b都不大于1,000,000,000。

Output

输出对应也有若干行,每行包含一个数字1或0,如果最后你是胜者,则为1,反之,则为0。

Sample Input

2 1
8 4
4 7

Sample Output

0
1
0

威佐夫博弈(Wythoff Game):

具体详细证明看转载的博客,在我博客中有,各种常见博弈的解题方法。

1)给你一个局面,让你求是先手输赢。

有了上面的分析,那么这个问题应该不难解决。首先求出差值,差值 * 1.618 == 最小值 的话后手赢,否则先手赢。(注意这里的1.618最好是用上面式子计算出来的,否则精

度要求高的题目会错)

 

2)给你一个局面,让你求先手输赢,假设先手赢的话输出他第一次的取法。

       首先讨论在两边同时取的情况,很明显两边同时取的话,不论怎样取他的差值是不会变的,那么我们可以根据差值计算出其中的小的值,然后加上差值就是大的一个值,当

然能取的条件是求出的最小的值不能大于其中小的一堆的石子数目。

      加入在一堆中取的话,可以取任意一堆,那么其差值也是不定的,但是我们可以枚举差值,差值范围是0 --- 大的石子数目,然后根据上面的理论判断满足条件的话就是一种合理的取法。


AC代码:

#include<iostream>
#include<cmath>
using namespace std;
int main()
{
	int m,n;
	while(cin>>m>>n)
	{
		if(m < n)
		{
			m ^= n;
			n ^= m;
			m ^= n;
		}
		int k = m - n;
		if((int)(k * (sqrt(5 * 1.0) + 1) / 2) == n)
		{
			cout<<"0"<<endl;
		}
		else
		{
			cout<<"1"<<endl;
		}
	}
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值