这道题的数据范围是25W...
直接暴力。。。
将所有点按照x排序之后。遍历所有的矩形和圆,用upper_bound和lower_bound寻找出符合图形x坐标的所有点,(位于区间[s,t]),然后暴力枚举刚才寻找的点判断是否在当前形状内。。
好黄好暴力。upper_bound和lower_bound的新用法~~
#include <algorithm>
#include <algorithm>
#include <iostream>
#include<string.h>
#include <fstream>
#include <math.h>
#include <vector>
#include <cstdio>
#include <string>
#include <queue>
#include <stack>
#include <map>
#include <set>
#define exp 1e-8
#define fi first
#define se second
#define ll long long
#define INF 0x3f3f3f3f
#define lson l,mid,rt<<1
#define pb(a) push_back(a)
#define mp(a,b) make_pair(a,b)
#define rson mid+1,r,(rt<<1)+1
#define all(a) a.begin(),a.end()
#define mm(a,b) memset(a,b,sizeof(a));
#define for1(a,b) for(int a=1;a<=b;a++)//1---(b)
#define rep(a,b,c) for(int a=b;a<=c;a++)//b---c
#define repp(a,b,c)for(int a=b;a>=c;a--)///
using namespace std;
void bug(string m="here"){cout<<m<<endl;}
template<typename __ll> inline void READ(__ll &m){__ll x=0,f=1;char ch=getchar();while(!(ch>='0'&&ch<='9')){if(ch=='-')f=-1;ch=getchar();}while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}m=x*f;}
template<typename __ll>inline void read(__ll &m){READ(m);}
template<typename __ll>inline void read(__ll &m,__ll &a){READ(m);READ(a);}
template<typename __ll>inline void read(__ll &m,__ll &a,__ll &b){READ(m);READ(a);READ(b);}
template<typename __ll>inline void read(__ll &m,__ll &a,__ll &b,__ll &c){READ(m);READ(a);READ(b);READ(c);}
template < class T > T gcd(T a, T b) { return b ? gcd(b, a % b) : a; }
template < class T > T lcm(T a, T b) { return a / gcd(a, b) * b; }
template < class T > inline void rmin(T &a, const T &b) { if(a > b) a = b; }
template < class T > inline void rmax(T &a, const T &b) { if(a < b) a = b; }
template < class T > T pow(T a, T b) { T r = 1; while(b > 0) { if(b & 1) r = r * a; a = a * a; b /= 2; } return r; }
template < class T > T pow(T a, T b, T mod) { T r = 1; while(b > 0) { if(b & 1) r = r * a % mod; a = a * a % mod; b /= 2; } return r; }
const int maxn=250000+100;
int ans[maxn];
struct POINT
{
double x,y;int idx;
bool operator <(const POINT &a)const {
return x<a.x;
}
POINT(){}
POINT(double a,double b)
{
x=a,y=b;
}
}point[maxn];int cnt_point=0;
struct square
{
POINT p1,p2;
void read()
{
scanf("%lf %lf %lf %lf",&p1.x,&p1.y,&p2.x,&p2.y);
}
bool insize(POINT tmp)
{
if(tmp.x>p1.x&&tmp.x<p2.x&&tmp.y>p1.y&&tmp.y<p2.y)
return 1;
return 0;
}
void cal()
{
int s=upper_bound(point,point+cnt_point,p1)-point;
int t=lower_bound(point,point+cnt_point,p2)-point-1;
for(int i=s;i<=t;i++)
if(insize(point[i]))
ans[point[i].idx]++;
}
}squ[maxn];int cnt_squ=0;
struct circle
{
POINT p;
double r;
void read()
{
scanf("%lf %lf %lf",&p.x,&p.y,&r);
}
double dist(POINT tmp)
{
return (tmp.x-p.x)*(tmp.x-p.x)+(tmp.y-p.y)*(tmp.y-p.y);
}
bool insize(POINT tmp)
{
if(dist(tmp)<r*r)
return 1;
return 0;
}
void cal()
{
int s=upper_bound(point,point+cnt_point,POINT(p.x-r,0.0))-point;
int t=lower_bound(point,point+cnt_point,POINT(p.x+r,0.0))-point-1;
for(int i=s;i<=t;i++)
if(insize(point[i]))
ans[point[i].idx]++;
}
}cir[maxn];int cnt_cir=0;
int main()
{
int n,m;
read(n,m);
cnt_point=m;
char ch[200];
while(n--)
{
scanf("%s",ch);
if(ch[0]=='r')
squ[cnt_squ++].read();
else cir[cnt_cir++].read();
}
rep(i,0,m-1)scanf("%lf %lf",&point[i].x,&point[i].y),point[i].idx=i;
sort(point,point+m);
rep(i,0,cnt_squ-1)squ[i].cal();
rep(i,0,cnt_cir-1)cir[i].cal();
rep(i,0,m-1)printf("%d\n",ans[i]);
return 0;
}