POJ 2677 Tour

本文介绍了一种计算平面中给定点集最短封闭路径的算法。该算法遵循从左至右再返回的策略,适用于旅游规划等场景。输入包含点的数量及坐标,输出为根据指定策略计算得出的路径长度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

双调欧几里得 DP



Tour
Time Limit: 1000MS Memory Limit: 65536K
Total Submissions: 3581 Accepted: 1596

Description

John Doe, a skilled pilot, enjoys traveling. While on vacation, he rents a small plane and starts visiting beautiful places. To save money, John must determine the shortest closed tour that connects his destinations. Each destination is represented by a point in the plane pi = < xi,yi >. John uses the following strategy: he starts from the leftmost point, then he goes strictly left to right to the rightmost point, and then he goes strictly right back to the starting point. It is known that the points have distinct x-coordinates. 
Write a program that, given a set of n points in the plane, computes the shortest closed tour that connects the points according to John's strategy.

Input

The program input is from a text file. Each data set in the file stands for a particular set of points. For each set of points the data set contains the number of points, and the point coordinates in ascending order of the x coordinate. White spaces can occur freely in input. The input data are correct.

Output

For each set of data, your program should print the result to the standard output from the beginning of a line. The tour length, a floating-point number with two fractional digits, represents the result. An input/output sample is in the table below. Here there are two data sets. The first one contains 3 points specified by their x and y coordinates. The second point, for example, has the x coordinate 2, and the y coordinate 3. The result for each data set is the tour length, (6.47 for the first data set in the given example).

Sample Input

3
1 1
2 3
3 1
4
1 1
2 3
3 1
4 2

Sample Output

6.47
7.89

Source

[Submit]   [Go Back]   [Status]   [Discuss]


#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>

using namespace std;

double x[100],y[100];

double dist(int a,int b)
{
	return sqrt((x[a]-x[b])*(x[a]-x[b])+(y[a]-y[b])*(y[a]-y[b]));
}

double dp[100][100];
int n;

int main()
{
	while(cin>>n)
	{
		for(int i=1;i<=n;i++)
		{
			cin>>x[i]>>y[i];
		}
		for(int i=0;i<=n;i++)
		{
			for(int j=0;j<=n;j++)
			{
				dp[i][j]=99999999;
			}
		}
		dp[1][1]=0; dp[2][1]=dist(1,2);
		for(int i=1;i<=n;i++)
		{
			for(int j=1;j<i;j++)
			{
				dp[i+1][j]=min(dp[i+1][j],dp[i][j]+dist(i+1,i));
				dp[i+1][i]=min(dp[i+1][i],dp[i][j]+dist(i+1,j));
			}
		}
		double ans=99999999;
		for(int j=1;j<n;j++)
			ans=min(ans,dp[n-1][j]+dist(j,n));
		printf("%.2f\n",ans+dist(n-1,n));
	}
	return 0;
}




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值