You're given a matrix with n rows and n columns. A basic property of a square matrix is the main diagonal: all cells that have the same row and column number.
We consider all diagonals that are parallel to the main one. We consider them from left-low corner to the right-upper one. So, the first cell of each diagonal will be, in order: (n, 1) (n - 1, 1) ... (1, 1) (1, 2) ... (1, n).
You need to choose one number from each diagonal. More, all 2*n-1 numbers must be pairwise distinct.
InputThe first line contains number n (1 ≤ n ≤ 300). Next n lines contain n numbers, representing the elements of the matrix. All elements of the matrix are between 1 and 109.
If there is no solution, output "NO". Otherwise, output "YES". Next, on the same line, output 2n-1 numbers, separated by spaces. Each number represents the chosen value from a diagonal. Diagonals are considered in the order given by the problem.
2 1 1 1 1
NO
题目大意:给出一个矩阵,把矩阵元素按照平行于与主对角线的斜线分成2*n-1组,求是否能在每一组里面取一个数使得每两个数都不相同,如果存在输出一种方案。
把每一斜线当做一个点,把每一矩阵元素的值也当做点,如果一个值在某一条斜边上出现过,则从代表斜边的点向代表矩阵元素值的点联一条流量为1的边;然后从源向所以代表斜边的点连一条流量为1的边,从代表元素值的点向汇连一条流量为1的边。这样就限制了每一条斜边只能取一个矩阵元素值,每个矩阵元素值只能被选一次,如果这样情况下的最大流是2*n-1的话,就说明存在一个方案满足题意要求。输出方案的话就扫描以斜边点为起点有哪些边的正向流向剩余为0,则表示这条边的终点代表的矩阵元素值已经被选了,记录下来输出。
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <map>
#include <set>
#define ll long long
#define maxn 500000
#define maxm 1000000
#define inf 2147483647
using namespace std;
inline void read(int &x){
char ch;
bool flag=false;
for (ch=getchar();!isdigit(ch);ch=getchar())if (ch=='-') flag=true;
for (x=0;isdigit(ch);x=x*10+ch-'0',ch=getchar());
x=flag?-x:x;
}
inline void write(int x){
static const int maxlen=100;
static char s[maxlen];
if (x<0) { putchar('-'); x=-x;}
if(!x){ putchar('0'); return; }
int len=0; for(;x;x/=10) s[len++]=x % 10+'0';
for(int i=len-1;i>=0;--i) putchar(s[i]);
}
int deep[maxn],now[maxn];
int v[maxm],st[maxm],ed[maxm],pre[maxm],tot;
void build(int a,int b,int c){
pre[++tot]=now[a];
now[a]=tot;
st[tot]=a;
ed[tot]=b;
v[tot]=c;
}
void add_edge(int a,int b,int c){
build(a,b,c);
build(b,a,0);
}
int d[maxn],t,w;
int ST,ED;
bool bfs(){
memset(deep,-1,sizeof(deep));
d[1]=ST;t=1;w=1;deep[ST]=0;
while (t<=w)
{
int x=d[t];
for (int p=now[x];p;p=pre[p])
if (v[p])
if (deep[ed[p]]<0)
{
int y=ed[p];
deep[y]=deep[x]+1;
d[++w]=y;
if (y==ED)
return 1;
}
t++;
}
return 0;
}
int dfs(int x,int Min){
if (x==ED) return Min;
int ans=0;
for (int p=now[x];p;p=pre[p])
{
if (v[p] && deep[ed[p]]>deep[x])
{
int tmp=dfs(ed[p],min(Min,v[p]));
v[p]-=tmp; v[p^1]+=tmp;
ans+=tmp; Min-=tmp;
if (!Min) return ans;
}
}
deep[x]=-1; return ans;
}
int n;
int a[400][400];
map <int ,int> M;
map <int ,int> _M;
set <int >S;
int cnt=0;
int get_num(int x){
if (S.count(x)==0)
{
cnt++;
S.insert(x);
M.insert( make_pair(x,cnt ) );
_M.insert( make_pair(cnt,x ) );
}
return M.at( x );
}
int main(){
read(n);
for (int i=1;i<=n;i++)
for (int j=1;j<=n;j++)
read(a[i][j]);
ST=1;
tot=1;
cnt=2*n;
for (int i=1;i<=n;i++)
for (int j=1;j<=n;j++)
add_edge(j-i+n+1,get_num( a[i][j]) ,1 );
for (int i=2;i<=2*n;i++)
add_edge( ST, i , 1);
ED=2*n+cnt+1;
for (int i=2*n+1;i<=2*n+cnt;i++)
add_edge( i , ED ,1 );
int ans=0;
while (bfs())
ans+=dfs(ST,inf);
if (ans!=2*n-1)
puts("NO");
else
{
puts("YES");
for (int i=2;i<2*n;i++)
{
for (int p=now[i];p;p=pre[p])
if (v[p]==0)
{
printf("%d ",_M.at( ed[p] ) );
break;
}
}
for (int p=now[2*n];p;p=pre[p])
if (v[p]==0)
{
printf("%d\n",_M.at( ed[p] ) );
break;
}
}
return 0;
}