矩阵及其运算

本文围绕矩阵展开,介绍了矩阵的概念,包括不同类型矩阵的定义。详细阐述了矩阵的运算,如相加、数乘、相乘等,还介绍了矩阵自身的运算,如转置、行列式、逆矩阵等。此外,讲解了克拉默法则和矩阵分块法及其运算法则。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、矩阵概念

m∗nm*nmn矩阵

A=[a11a12...a1na21a22...a2n............am1am2...amn]A=\left[ \begin{matrix} a_{11} & a_{12} & ... & a_{1n}\\ a_{21} & a_{22} & ... & a_{2n} \\ ... & ... & ... & ... \\ a_{m1} & a_{m2} & ... & a_{mn} \end{matrix} \right]A=a11a21...am1a12a22...am2............a1na2n...amn
当m=n时,为n阶矩阵,亦称为n阶方阵。

行矩阵1∗n1*n1n的矩阵;

[a11a12...a1n]\left[ \begin{matrix} a_{11} & a_{12} & ... & a_{1n}\\ \end{matrix} \right][a11a12...a1n]

列矩阵m∗1m*1m1的矩阵;

[a11a21...am1]\left[ \begin{matrix} a_{11}\\ a_{21}\\ ... \\ a_{m1} \end{matrix} \right]a11a21...am1

零矩阵:元素都为0的矩阵,记作OOO

对角矩阵:除对角线外的元素都为0的矩阵,记作Λ\LambdaΛ

Λ=[λ10...00λ2...0............00...λn]\Lambda=\left[ \begin{matrix} \lambda_1 & 0 & ... & 0\\ 0 & \lambda_2 & ... & 0 \\ ... & ... & ... & ... \\ 0 & 0 & ... & \lambda_n \end{matrix} \right]Λ=λ10...00λ2...0............00...λn
记作:Λ=diag(λ1,λ2,...,λn)\Lambda=diag(\lambda_1,\lambda_2,...,\lambda_n)Λ=diag(λ1,λ2,...,λn)

单位矩阵:对角线为1,其余元素都为0的矩阵;

E=[10...001...0............00...1]E=\left[ \begin{matrix} 1 & 0 & ... & 0\\ 0 & 1 & ... & 0 \\ ... & ... & ... & ... \\ 0 & 0 & ... & 1 \end{matrix} \right]E=10...001...0............00...1

二、矩阵运算

已知A=[a11a12a21a22]A=\left[\begin{matrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{matrix}\right]A=[a11a21a12a22],B=[b11b12b21b22]B=\left[\begin{matrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{matrix}\right]B=[b11b21b12b22],常数λ\lambdaλ;

1、矩阵相加

A+B=[a11+b11a12+b12a21+b21a22+b22]A+B=\left[\begin{matrix} a_{11}+b_{11} & a_{12}+b_{12} \\ a_{21}+b_{21} & a_{22}+b_{22} \end{matrix}\right]A+B=[a11+b11a21+b21a12+b12a22+b22]

2、数与矩阵相乘

λA=[λa11λa12λa21λa22]\lambda A=\left[\begin{matrix} \lambda a_{11} & \lambda a_{12} \\ \lambda a_{21} & \lambda a_{22} \end{matrix}\right]λA=[λa11λa21λa12λa22]

3、矩阵相乘

AB=[a11b11+a12b21a11b12+a12b22a21b11+a22b21a21b12+a22b22]AB=\left[\begin{matrix} a_{11}b_{11}+a_{12}b_{21} & a_{11}b_{12}+a_{12}b_{22} \\ a_{21}b_{11}+a_{22}b_{21} & a_{21}b_{12} +a_{22}b_{22} \end{matrix}\right]AB=[a11b11+a12b21a21b11+a22b21a11b12+a12b22a21b12+a22b22]

三、矩阵自身的运算

1、转置矩阵

A=[a11a12...a1na21a22...a2n............am1am2...amn],AT=[a11a21...am1a12a22...am2............a1na2n...amn]A=\left[ \begin{matrix} a_{11} & a_{12} & ... & a_{1n}\\ a_{21} & a_{22} & ... & a_{2n} \\ ... & ... & ... & ... \\ a_{m1} & a_{m2} & ... & a_{mn} \end{matrix} \right],A^T=\left[ \begin{matrix} a_{11} & a_{21} & ... & a_{m1}\\ a_{12} & a_{22} & ... & a_{m2} \\ ... & ... & ... & ... \\ a_{1n} & a_{2n} & ... & a_{mn} \end{matrix} \right]A=a11a21...am1a12a22...am2............a1na2n...amnAT=a11a12...a1na21a22...a2n............am1am2...amn

转置矩阵的运算公式
(AT)T=A(A^T)^T=A(AT)T=A
(A+B)T=AT+BT(A+B)^T=A^T+B^T(A+B)T=AT+BT
(λA)T=λAT(\lambda A)^T=\lambda A^T(λA)T=λAT
(AB)T=BTAT(AB)^T=B^TA^T(AB)T=BTAT

2、方阵的行列式

运算公式
∣AT∣=∣A∣\left|A^T\right|=\left|A\right|AT=A
∣λA∣=λn∣A∣\left|\lambda A\right|=\lambda^n \left|A\right|λA=λnA
∣AB∣=∣A∣∣B∣\left|AB\right|= \left|A\right|\left|B\right|AB=AB

伴随矩阵:由各元素的代数余子式所组成的矩阵;

A∗=[A11A21...An1A12A22...An2............A1nA2n...Ann]A^*=\left[ \begin{matrix} A_{11} & A_{21} & ... & A_{n1}\\ A_{12} & A_{22} & ... & A_{n2} \\ ... & ... & ... & ... \\ A_{1n} & A_{2n} & ... & A_{nn} \end{matrix} \right]A=A11A12...A1nA21A22...A2n............An1An2...Ann

AA∗=A∗A=∣A∣EAA^*=A^*A=\left|A\right|EAA=AA=AE

3、逆矩阵

AB=BA=EAB=BA=EAB=BA=E,则矩阵BBB称为AAA的逆矩阵,∣A∣≠0|A|≠0A̸=0

A−1=1∣A∣A∗A^{-1}=\frac{1}{|A|}A^*A1=A1A

运算公式
如果A=PΛP−1A=P\Lambda P^{-1}A=PΛP1,Λ=diag(λ1,λ2,...,λn)\Lambda=diag(\lambda_1,\lambda_2,...,\lambda_n)Λ=diag(λ1,λ2,...,λn)那么
Ak=PΛkP−1A^k=P\Lambda^k P^{-1}Ak=PΛkP1
φ(A)=Pφ(Λ)P−1\varphi(A)=P\varphi(\Lambda) P^{-1}φ(A)=Pφ(Λ)P1
φ(Λ)=diag{φ(λ1),φ(λ2),...,φ(λn)}\varphi(\Lambda)=diag\{\varphi(\lambda_1),\varphi(\lambda_2),...,\varphi(\lambda_n) \}φ(Λ)=diag{φ(λ1),φ(λ2),...,φ(λn)}

四、克拉默法则

如果线性方程组的系数矩阵AAA的行列式不等于0,那么方程组有唯一解:
xi=∣Ai∣∣A∣x_i=\frac{|A_i|}{|A|}xi=AAi
其中AiA_iAi是把AAA中的第iii列使用常数项矩阵代替后所得到的n阶矩阵,即
Ai=[a11a12...b1...a1na21a22...b2...a2n..................am1am2...bn...amn]A_i=\left[ \begin{matrix} a_{11} & a_{12} & ... & b_1 & ... & a_{1n}\\ a_{21} & a_{22} & ...& b_2 & ... & a_{2n} \\ ... & ... & ... & ... & ... & ... \\ a_{m1} & a_{m2} & ...& b_n & ... & a_{mn} \end{matrix} \right]Ai=a11a21...am1a12a22...am2............b1b2...bn............a1na2n...amn

五、矩阵分块法

A=[A11...A1r.........As1...Asr],B=[B11...B1r.........Bs1...Bsr]A=\left[ \begin{matrix} A_{11} & ... & A_{1r}\\ ... & ... & ... \\ A_{s1} & ...& A_{sr} \end{matrix} \right],B=\left[ \begin{matrix} B_{11} & ... & B_{1r}\\ ... & ... & ... \\ B_{s1} & ...& B_{sr} \end{matrix} \right]A=A11...As1.........A1r...Asr,B=B11...Bs1.........B1r...Bsr

运算法则:

1、加法

A+B=[A11+B11...A1r+B1r.........As1+Bs1...Asr+Bsr]A+B=\left[ \begin{matrix} A_{11}+B_{11} & ... & A_{1r}+B_{1r}\\ ... & ... & ... \\ A_{s1}+B_{s1} & ...& A_{sr}+B_{sr} \end{matrix} \right]A+B=A11+B11...As1+Bs1.........A1r+B1r...Asr+Bsr

2、与常数相乘

λA=[λA11...λA1r.........λAs1...λAsr]\lambda A=\left[ \begin{matrix} \lambda A_{11} & ... & \lambda A_{1r}\\ ... & ... & ... \\ \lambda A_{s1} & ...& \lambda A_{sr} \end{matrix} \right]λA=λA11...λAs1.........λA1r...λAsr

3、矩阵相乘

AB=[C11...C1r.........Cs1...Csr]AB=\left[ \begin{matrix} C_{11} & ... & C_{1r}\\ ... & ... & ... \\ C_{s1} & ...& C_{sr} \end{matrix} \right]AB=C11...Cs1.........C1r...Csr

其中

Cij=∑k=1tAikBkjC_{ij}=\sum_{k=1}^{t}A_{ik}B_{kj}Cij=k=1tAikBkj

4、转置

AT=[A11T...As1t.........A1rT...AsrT]A^T=\left[ \begin{matrix} A_{11}^T & ... & A_{s1}^t \\ ... & ... & ... \\ A_{1r}^T& ...& A_{sr}^T \end{matrix} \right]AT=A11T...A1rT.........As1t...AsrT

5、分块对角矩阵

A=[A1OA2...OAs]A=\left[ \begin{matrix} A_{1} & & & O\\ & A_{2} & & \\ & &... & \\ O & && A_{s} \end{matrix} \right]A=A1OA2...OAs

则有:
∣A∣=∣A1∣∣A2∣...∣As∣|A|=|A_1||A_2|...|A_s|A=A1A2...As

A−1=[A1−1OA2−1...OAs−1]A^{-1}=\left[ \begin{matrix} A_{1}^{-1} & & & O\\ & A_{2}^{-1} & & \\ & &... & \\ O & && A_{s}^{-1} \end{matrix} \right]A1=A11OA21...OAs1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值