Time Limit: 2000MS | Memory Limit: 65536K | |
Total Submissions: 42562 | Accepted: 13224 |
Description
Farmer John has been informed of the location of a fugitive cow and wants to catch her immediately. He starts at a pointN (0 ≤ N ≤ 100,000) on a number line and the cow is at a point K (0 ≤ K ≤ 100,000) on the same number line. Farmer John has two modes of transportation: walking and teleporting.
* Walking: FJ can move from any point X to the points X - 1 orX
+ 1 in a single minute
* Teleporting: FJ can move from any point X to the point 2 × X in a single minute.
If the cow, unaware of its pursuit, does not move at all, how long does it take for Farmer John to retrieve it?
Input
Output
Sample Input
5 17
Sample Output
4
Hint
#include<stdio.h>
#include<string.h>
#include<math.h>
#include<string>
#include<iostream>
#include<algorithm>
#include<queue>
using namespace std;
struct node{
int cur;
int ts;
node(int cur,int ts):cur(cur),ts(ts){}
};
bool vis[300010];
int st,ed;
int bfs()
{
if(st>ed) return st-ed;
int len=ed-st;
queue<node>que;
que.push(node(st,0));
vis[st]=1;
while(que.size())
{
node tp=que.front(); que.pop();
if(tp.cur==ed) return tp.ts;
else if(tp.ts>len) continue;
else{
if(tp.cur<ed&&vis[tp.cur+1]==0)
{
que.push(node(tp.cur+1,tp.ts+1));
vis[tp.cur+1]=1;
}
if(tp.cur-1>=0&&vis[tp.cur-1]==0)
{
que.push(node(tp.cur-1,tp.ts+1));
vis[tp.cur-1]=1;
}
if(tp.cur*2<=ed*2&&vis[tp.cur*2]==0)
{
que.push(node(tp.cur*2,tp.ts+1));
vis[tp.cur*2]=1;
}
}
}
}
int main()
{
// freopen("in.in","r",stdin);
while(~scanf("%d%d",&st,&ed))
{
memset(vis,0,sizeof(vis));
cout<<bfs()<<endl;
}
return 0;
}