二值分类器转为多值分类器的做法

本文介绍了如何将二分类模型推广到多分类任务中,包括一对多法(OVR)、一对一法(OVO)及层次支持向量机(H-SVMs)三种策略。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

问题:

像svm用一个线性解平面切分,只能把数据分成两类。

Logistic Regression 只能把数据分成两类。

K-means只能指定聚类个中心点的个数。

ROC也是在二类数据上做效果度量。


怎么样把两类的分类的模型推广到多类上?


答:

a.一对多法(one-versus-rest,简称OVR SVMs)。训练时依次把某个类别的样本归为一类,其他剩余的样本归为另一类,这样k个类别的样本就构造出了k个SVM。分类时将未知样本分类为具有最大分类函数值的那类。

b.一对一法(one-versus-one,简称OVO SVMs或者pairwise)。其做法是在任意两类样本之间设计一个SVM,因此k个类别的样本就需要设计k(k-1)/2个SVM。当对一个未知样本进行分类时,最后得票最多的类别即为该未知样本的类别。Libsvm中的多类分类就是根据这个方法实现的。

c.层次支持向量机(H-SVMs)。层次分类法首先将所有类别分成两个子类,再将子类进一步划分成两个次级子类,如此循环,直到得到一个单独的类别为止。




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值