python 几个机器学习的库的算法比较。发现自已只懂其中几个。

本文全面概述了深度学习与自然语言处理领域的关键技术和应用,包括神经网络、词法分析、句法分析、文本分类等。探讨了深度学习在解决自然语言处理问题中的优势,以及其在实际场景中的应用案例。


scikit-learn
mlpy MDP PyBrain Theano MILK NLTK Gensim Orange
AdaBoostyes    yes   
C4.5        yes
Canonical Correlation Analysisyes yes      
Cross Validationyesyes   yes   
DBSCANyes        
Decision Treesyesyesyes     yes
Deep Belief Networks   yes     
Dictionary Learningyes        
Dynamic Time Warping (yes) yes       
Elastic Netyesyesyes      
Evolution Strategies (ES)   yes     
Fast ICAyes yes      
Fast Principal Component Analysis (Fast PCA) yes       
Gaussian Mixture Modelyes yes      
Gaussian Naive Bayes  yes      
Genetic Algorithm   yes     
Golub Classifier yes       
GPU computation    yes    
Gradient Based Optimizationyes   yes    
Gradient Boosting Regression  yes      
Grid Searchyes        
Hidden Markov Model with Gaussian Mixture Emissions (HMM GMM)yes yes      
Hierarchical Clustering (Ward…)yesyesyes     yes
Hierarchical Dirichlet Application (HDP)       yes 
ICAyes yes      
Isotonic Regressionyes        
KDTreeyes        
Kernal Densityyes        
Kernel Fisher Discriminant yes       
Kernel PCA yesyes      
Kernel Ridg Regression yes       
k-Meansyesyes yes yes  yes
k-NNyesyesyes     yes
Kohonen (SOM)   yes    yes
Label Spreadingyes yes      
Largest Common Subsequence (LCS) yes       
Lassoyes yes      
Latent Dirichlet Application (LDA)       yes 
Least Angle Regression (LARS)yesyes       
Linear Discriminant Analysis (LDA)yesyesyes      
Linear Regressionyesyesyesyes    yes
Logisitic Regressionyesyesyes     yes
Naive Bayesian Learneryes       yes
Natural Language Processing (NLP)      yes  
Neural Network (NN)yesyesyesyes     
Non-Negative matrix factorization by Projected Gradient (NMF)yes yes      
Partial Least Square (PLS)  yes      
Partial Least Square (SVD)  yes      
Particle Swarm Optimization (PSO)   yes     
Passive Aggressive Classificationyes        
Passive Aggressive Regressionyes        
Pipelineyes yes      
Principal Component Analysis (PCA)yesyesyesyes    yes
Probabilistic Principal Component Analysis (pPCA)yes yesyes     
p-Valueyes yes      
Quadratic Discriminant Analysis (QDA)yes yes      
Random Forestsyes yes  yes   
Recurrent Neural Network   yes     
Regression Tree  yes     yes
Reinforcement Learning   yes     
Ridge Regressionyesyesyes      
ROC / Precision / Recallyes       yes
SARSA   yes     
Singular Value Decomposition (SVD)yes yes      
Sparse PCAyes yes      
Spectral BiClusteringyes        
Spectral Clusteringyes        
Spectral Coclusteringyes        
Spectral Regression Discriminant Analysis yes       
Support Vector Classificiation (SVC)yesyesyes      
Support Vector Regression (SVR)yes yes      
SupportVector Machine (SVM)yesyesyesyes yes   
TF-IDFyes yes      
Wavelets yes    
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值