/*
*Corpyright (c)2013,烟台大学计算机学院
*All right reseved.
*作者:张梦佳
*完成日期:2014年5月20日
*版本号:v1.0
*输入描述:
*问题描述:
*程序输出:
*问题分析:
*算法设计:
*/
#include <iostream>
#include <cmath>
using namespace std;
class Point
{
public:
Point(double a=0,double b=0):x(a),y(b){}
double getx()
{
return x;
}
double gety()
{
return y;
}
void display()
{
cout<<"("<<x<<","<<y<<")"<<endl;
}
friend ostream& operator<<(ostream&output,Point&s);
protected:
double x;
double y;
};
ostream& operator<<(ostream&output,Point&s)
{
output<<"("<<s.getx()<<","<<s.gety()<<")"<<endl;
return output;
}
class Circle:public Point
{
public:
Circle(double a=0,double b=0,double c=0):Point(a,b),r(c){}
double area()
{
return (3.14*r*r);
}
friend double locate(Point&s,Point&s1);
friend ostream& operator<<(ostream&output,Circle&s);
void jisuan(Point&q);
double getr()
{
return r;
}
bool operator>(Circle&s);
bool operator<=(Circle&s);
bool operator<(Circle&s);
bool operator>=(Circle&s);
bool operator==(Circle&s);
bool operator!=(Circle&s);
private:
double r;
};
bool Circle::operator>(Circle&s)
{
if(area()>s.area())
return true;
else
return
false;
}
bool Circle::operator<=(Circle&s)
{
if(!(area()>s.area()))
return true;
else
return
false;
}
bool Circle::operator<(Circle&s)
{
if(area()<s.area())
return true;
else
return
false;
}
bool Circle::operator==(Circle&s)
{
if(area()==s.area())
return true;
else
return
false;
}
bool Circle::operator!=(Circle&s)
{
if(area()!=s.area())
return true;
else
return
false;
}
bool Circle::operator>=(Circle&s)
{
if(!(area()>s.area()))
return true;
else
return false;
}
ostream& operator<<(ostream&output,Circle&s)
{
output<<"("<<s.getx()<<","<<s.gety()<<","<<s.r<<")";
return output;
}
double locate(Point&s,Circle&s1)
{
double num,num1;
num=sqrt((s1.getx()-s.getx())*(s1.getx()-s.getx())+(s1.gety()-s.gety())*(s1.gety()-s.gety()));
num1=num-s1.getr();
return num1;
}
void Circle::jisuan(Point&p)
{
double num,num1,num2,num3,num4;;
num=pow((y-p.gety())/(x-p.getx()),2)+1;
num1=x+sqrt(r*r/num);
num2=x-sqrt(r*r/num);
num3=y+(y-p.gety())/(x-p.getx())*(num1-p.getx())+p.gety();
num4=y+(y-p.gety())/(x-p.getx())*(num2-p.getx())+p.gety();
Point c1(num1,num3),c2(num2,num4);
c1.display();
c2.display();
}
int main( )
{
Circle c1(3,2,4),c2(4,5,5),c3(3,2,4); //c2应该大于c1
Point p1(1,1),p2(3,-2),p3(7,3); //分别位于c1内、上、外
cout<<"圆c1: "<<c1;
cout<<"点p1: "<<p1;
cout<<"点p1在圆c1之"<<((locate(p1, c1)>0)?"外":((locate(p1, c1)<0)?"内":"上"))<<endl;
cout<<"点p2: "<<p2;
cout<<"点p2在圆c1之"<<((locate(p2, c1)>0)?"外":((locate(p2, c1)<0)?"内":"上"))<<endl;
cout<<"点p3: "<<p3;
cout<<"点p3在圆c1之"<<((locate(p3, c1)>0)?"外":((locate(p3, c1)<0)?"内":"上"))<<endl;
if(c1>c2)
cout<<"c1"<<c1<<">"<<"c2"<<c2;
else
cout<<"c1"<<c1<<"<"<<"c2"<<c2;
cout<<endl;
if(c1==c3)
cout<<"c1"<<c1<<"="<<"c3"<<c3;
else
cout<<"c1"<<c1<<"!="<<"c3"<<c3;
cout<<endl;
c1.jisuan(p3);
return 0;
}
感悟
好复杂的算法,不知道我写没写错!时间紧迫我先传了!