模板匹配matchTemplate

定义:模板匹配是在给定的图片中查找和模板最相似的区域,该算法的输入包括模板和图片,整个任务的思路就是按照滑窗的思路不断的移动模板图片,计算其与图像中对应区域的匹配度,最终将匹配度最高的区域选择为最终的结果。
原理:将模板块每次移动一个像素(从左往右,从上往下),在每一个位置,都计算与模板图像的相似程度。对于每一个位置将计算的相似结果保存在结果矩阵®中。如果输入图像的大小(WxH)且模板图像的大小(wxh),则输出矩阵R的大小为(W-w +1,H-h+1)将R显示为图像。获得图像后,查找最大值所在的位置,那么该位置对应的区域就被认为是最匹配的。对应的区域就是以该点为顶点,长宽和模板图像一样大小的矩阵。
案例
API

res = cv.matchTemplate(img,template,method)
img:要进行模板匹配的图像
Template:模板
实现模板匹配的算法,主要有method:
1.平方差匹配(cv2.TM_SQDIFF_NORMED):利用模板与图像之间的平方差进行匹配最好的匹配是0,匹配越差,匹配的值越大。
2.相关匹配(cv2.TM_CCORR_NORMED):利用模板与图像间的乘法进行匹配,数值越大表示匹配程度较高,越小表示匹配效果差,
3.利用相关系数匹配(cv2.TM_CCOEFF_NORMED):利用模板与图像间的相关系数匹配,1表示完美的匹配,-1表示最差的匹配。

完成匹配后,使用cv.minMaxLoc()方法查找最大值所在的位置即可。如果使用平方差作为比较方法,则最小值位置是最佳匹配位置。
单个对象匹配

import cv2 as cv2
img = cv2.imread('11.png')    #(781, 1314, 3)数组
template <
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值