利用Pytorch的C++前端(libtorch)读取预训练权重并进行预测
https://blog.youkuaiyun.com/iamoldpan/article/details/85057238
https://blog.youkuaiyun.com/a819411321/article/details/97372177
pytorch 参数写入二进制文件
data = []
for name, param in model.state_dict().items():
print("name:",name, " param:", param.size())
if param.size() != torch.Size([]):
pa = param.reshape(-1).to(device)
numpy_param = pa.detach().numpy()
print("param:", len(numpy_param))
data += list(numpy_param)
print("len data:", len(data))
f = open('weights/yolov3.bin','wb+')
data_struct = struct.pack(('%df' % len(data)), *data)
f.write(data_struct)
f.close()