均值为 a+b2\frac{a + b}{2}2a+b, 总数n为(b−a)(b-a)(b−a)
方差= (x−均值)2n\frac{(x-均值)^2}{n}n(x−均值)2
所以[a, b]均匀分布的方差为:
variance=∫ab(x−a+b2)2dx(b−a)=1(b−a)⋅13(x−a+b2)3∣ab=1(b−a)⋅13⋅[(b−a+b2)3−(a−a+b2)3]=1(b−a)⋅13⋅[(b−a2)3−(a−b2)3]=1(b−a)⋅23⋅(b−a2)3=(b−a)212
\begin{aligned}
variance &= \frac{\int_a^b (x - \frac{a + b}{2})^2 dx }{(b - a)}\\
&= \frac{1}{(b - a)} \cdot { \frac{1}{3}(x - \frac{a + b}{2})^3\bigg\rvert_{a}^{b} } \\
&=\frac{1}{(b - a)} \cdot \frac{1}{3} \cdot [ (b - \frac{a + b}{2})^3- (a - \frac{a + b}{2})^3] \\
&=\frac{1}{(b - a)} \cdot \frac{1}{3} \cdot [ (\frac{b - a}{2})^3- (\frac{a - b}{2})^3] \\
&=\frac{1}{(b - a)} \cdot \frac{2}{3} \cdot (\frac{b - a}{2})^3 \\
&=\frac{(b - a)^2}{12}
\end{aligned}
variance=(b−a)∫ab(x−2a+b)2dx=(b−a)1⋅31(x−2a+b)3∣∣∣∣ab=(b−a)1⋅31⋅[(b−2a+b)3−(a−2a+b)3]=(b−a)1⋅31⋅[(2b−a)3−(2a−b)3]=(b−a)1⋅32⋅(2b−a)3=12(b−a)2
不过也可以用D(x)=E(x2)−E(x)2D(x)=E(x^2)-E(x)^2D(x)=E(x2)−E(x)2来算