目录
相关阅读
简述
高通滤波是一种增强图像高频分量的处理方法,常用于边缘检测和特征提取。在图像处理中,高通滤波可以突出图像中的边缘、轮廓和细节信息,而抑制平滑区域(低频分量)。
本文将重点介绍三种常见的高通滤波器:索贝尔(Sobel)、沙尔(Scharr) 和 拉普拉斯(Laplacian),并结合代码和应用场景进行讲解。
什么是高通滤波?
高通滤波的概念
高通滤波是对图像进行卷积操作,以保留图像中的快速变化部分(如边缘和细节),同时抑制低频分量(如大面积平坦区域)。
应用场景
- 边缘检测:提取物体轮廓和边界。
- 特征提取:用于后续计算机视觉任务(如目标检测)。
- 图像锐化:增强图像清晰度。
索贝尔算子
索贝尔算子是一种经典的边缘检测算子,通过计算像素梯度,检测图像的水平和垂直边缘。
算子公式
水平边缘检测:
垂直边缘检测: