#!usr/bin/env python
#-*- coding:utf-8 _*-
'''
@author:Administrator
@file: decision_tree.py
@time: 2020-05-11 下午 4:03
'''
import pandas as pd
from sklearn.feature_extraction import DictVectorizer
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier, export_graphviz
def decisionTree():
'''
决策树对数据预测
:return:
'''
######1.读取所有数据
tree_data=pd.read_csv("../data/tree_data.csv");
#tree_data=tree_data.head(5);
print(tree_data);
#获取指定列
print(tree_data['pclass']);
#####2. 处理数据,找出特征值和目标值
#获取多个特征时[[x1,x2,x3]]
x = tree_data[['pclass',"age","sex"]]
#print(x);
y = tree_data['survived']
#print(x);
#print(y);
#####3. 缺失值处理,使用平均数进行插补
print(x['age'].mean())
####这个写法无法完成插补,报错,还是nan
#x['age'].fillna(x['age'].mean(), inplace=True)
######这个办法完成了插补
x.fillna({'age': x['age'].mean()}, inplace=True);
print(x['age']);
#####4. 分隔数据集
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.25);
#####5.进行处理(特征工程)特征-》类别-》one_hot编码
dict = DictVectorizer(sparse=False)
#orient =’records’ ,转化后是 list形式:[{column(列名) : value(值)}……{column:value}];
#详细介绍参考:https://www.lizenghai.com/archives/51607.html
x_train = dict.fit_transform(x_train.to_dict(orient="records"))
print(dict.get_feature_names())
x_test = dict.transform(x_test.to_dict(orient="records"))
print(x_train)
########6.用决策树进行预测
dec = DecisionTreeClassifier()
dec.fit(x_train, y_train)
######7.模型评估
# # 预测准确率
print("预测的准确率:", dec.score(x_test, y_test))
print("预测:",dec.predict(x_test));
# # 导出决策树的结构
export_graphviz(dec, out_file="./tree.dot", feature_names=['年龄', 'pclass=1st', '女性', '男性'])
decisionTree();
https://blog.youkuaiyun.com/u011066470/article/details/106060002
该看地14集
2858





