Robust Adversarial Reinforcement Learning

当前强化学习方法因测试泛化和模拟转移问题而无法很好地泛化。该工作旨在学习一种对模拟和真实世界之间建模错误及训练与测试场景不匹配具有鲁棒性的策略。通过联合学习的对手,创建困难情况以提高策略的适应性,同时引入条件价值在风险的概念,强调在最坏情况下的性能,以实现对不确定性的抵御。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

motivation

Current RL methods fail to generalize due to two issues:

  • test generalization
    data is scarce especially in the sense of real-world data. So RL models often overfit to the training scenarios.
  • simulation transfer
    the environment and the physics of the real-world is different from that of the experiemts. So the learned policy not necessarily transfer to the real-world setting.

Can we model the gap between the simulation and the real-world? How?

  • list all possible factors that may vary between the two cases.
    Impractical because the space is inifinite
  • viewing the real-world from the simulation being applied disturbances.

The goal of this work is to learn a policy that is robust to modeling errors in simulation and mismatch between training and testing scenarios.

The basic idea is to resort to a joinly-learned adversary to apply disturbances to the system, in two ways:

  1. the adversary create tough situations where the protagonist easily fail to gain high rewards, i.e., sample hard examples.
    e.g. driving a car with two driver seats
  2. the adversary can be endowed with domain knowledge
    e.g. where exactly people want to attack the protagonist, or even the control over the environment.

Model formulation

This work is set on MDP with some variations: 1) the transition function is dependent on both actions from the adversary and the protagonist, 2) the reward function is dependent on both actions, and 3) this is a two-player zero-su

### 高效行动鲁棒强化学习中的概率策略执行不确定性 在处理具有不确定性的环境时,高效的行动鲁棒性对于强化学习至关重要。为了应对这种挑战,研究者们提出了多种方法来增强算法面对不同形式噪声的能力。 #### 基于模型的价值估计提升效率 一种有效的方法是在不依赖具体环境模拟的情况下改进价值函数的学习过程。通过引入基于模型的价值评估技术,可以在减少样本复杂度的同时提高泛化能力[^2]。这种方法允许代理更好地理解其行为对未来奖励的影响,即使当实际采取的动作存在偏差时也能保持良好的性能表现。 #### 结合集成方法优化特征选择与分类 针对网络入侵检测等领域内的应用需求,可以采用集成学习的方式来进行特征的选择和分类工作。此方案不仅能够改善系统的准确性,而且有助于构建更加稳定可靠的决策支持体系结构[^3]。这些特性同样适用于其他需要高可靠性和低误报率的应用场景,比如自动驾驶汽车控制系统的设计。 #### 实际机器人平台上的基准测试分析 为了验证所提出的理论框架及其有效性,在真实世界的物理平台上进行了广泛的实验对比研究。结果显示,某些特定类型的随机扰动确实会对标准RL算法造成负面影响;然而,经过适当调整后的新型架构能够在很大程度上缓解这些问题并展现出更强的适应力[^1]。 ```python import torch from torch import nn, optim import numpy as np class ProbabilisticPolicyNetwork(nn.Module): def __init__(self, input_dim, hidden_dims, output_dim): super(ProbabilisticPolicyNetwork, self).__init__() layers = [] dims = [input_dim] + hidden_dims for i in range(len(dims)-1): layers.append(nn.Linear(dims[i], dims[i+1])) layers.append(nn.ReLU()) layers.append(nn.Linear(hidden_dims[-1], output_dim)) layers.append(nn.Softmax(dim=-1)) # Ensure probabilities sum to one self.model = nn.Sequential(*layers) def forward(self, state): return self.model(state.float()) def train_policy(policy_net, optimizer, states, actions_taken, rewards_received): predicted_probs = policy_net(states) log_probabilities = (predicted_probs * actions_taken).sum(-1).log() loss = -(rewards_received * log_probabilities).mean() optimizer.zero_grad() loss.backward() optimizer.step() # Example usage of the defined components state_size = 4 hidden_sizes = [64, 64] action_space_size = 2 policy_network = ProbabilisticPolicyNetwork(state_size, hidden_sizes, action_space_size) optimizer = optim.Adam(policy_network.parameters(), lr=0.001) dummy_states = torch.tensor(np.random.rand(5,state_size), dtype=torch.float32) dummy_actions = F.one_hot(torch.randint(action_space_size,(5,),dtype=torch.int64)).float() dummy_rewards = torch.tensor([1., -0.5, 0.8, 0.2, -1.]) train_policy(policy_network, optimizer, dummy_states, dummy_actions, dummy_rewards) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值