二维费用背包--poj1948

Language:
Triangular Pastures
Time Limit: 1000MS Memory Limit: 30000K
Total Submissions: 5789 Accepted: 1855

Description

Like everyone, cows enjoy variety. Their current fancy is new shapes for pastures. The old rectangular shapes are out of favor; new geometries are the favorite.  

I. M. Hei, the lead cow pasture architect, is in charge of creating a triangular pasture surrounded by nice white fence rails. She is supplied with N (3 <= N <= 40) fence segments (each of integer length Li (1 <= Li <= 40) and must arrange them into a triangular pasture with the largest grazing area. Ms. Hei must use all the rails to create three sides of non-zero length.  

Help Ms. Hei convince the rest of the herd that plenty of grazing land will be available.Calculate the largest area that may be enclosed with a supplied set of fence segments.  

Input

* Line 1: A single integer N  

* Lines 2..N+1: N lines, each with a single integer representing one fence segment's length. The lengths are not necessarily unique.  

Output

A single line with the integer that is the truncated integer representation of the largest possible enclosed area multiplied by 100. Output -1 if no triangle of positive area may be constructed.  

Sample Input

5
1
1
3
3
4

Sample Output

692

Hint

[which is 100x the area of an equilateral triangle with side length 4]


首先说自己没想出来,不知道怎么把他抽象成二维背包,看了大神们的解释才明白了些。
把边的长度看成费用,
三角形中的某条边 i 看作第一维费用,另一条边看作是第二维费用 j,背包容量为总长的一半(三角形任意一条边都不可能比周长的一半大)则第三边为总长度sum-i-j;
找出所有满足的i,j,枚举求出最大面积即可。其中面积公式为{ 1.t=sum/2; 2.area=sqrt(t*(t-i)*(t-j)*(t-(sum-i-j));}
状体转移方程为   dp[ k ][ i ][ j ] = dp[ k-1 ][ i-sticks[k] ][ j ] | dp[ k-1 ][ i ][ j-sticks[k] ]; 意思是取第k条棍子的时候,组成的两条边长度分别为 i 和 j 。

AC代码如下:
#include<iostream>
#include<cmath>
#include<cstdio>
#include<cstring>
using namespace std;
int f[50];
int dp[805][805];
int main()
{
    //freopen("in.txt","r",stdin);
    int n;
    while(cin>>n)
    {
        int sum=0;
        for(int i=1; i<=n; i++)
        {
            cin>>f[i];
            sum+=f[i];
        }
        memset(dp,0,sizeof(dp));
        dp[0][0]=1;
        int mid=sum/2;
        for(int i=1; i<=n; i++)
            for(int j=mid; j>=0; j--)
                for(int k=mid; k>=0; k--)
                    if((j>=f[i]&&dp[j-f[i]][k])||(k>=f[i]&&dp[j][k-f[i]]))//只要j-f[i]或者k-f[i]中存在里挑,就是可行的
                        {dp[j][k]=1;}
       int ans=-1;
        for(int i=mid; i>0; i--)
            for(int j=mid; j>0; j--)
                if(dp[i][j])
                {
                    int q=sum-i-j;
                    if(i+j>q&&i+q>j&&j+q>i)
                    {
                        double p=sum/2.0;
                        double x=sqrt(p*(p-i)*(p-j)*(p-q));//海伦公式
                        if(x*100>ans)
                              ans=x*100;
                    }
                }
        cout<<ans<<endl;
            //printf("%d\n",ans);
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值