
矩阵快速幂
u010660276
这个作者很懒,什么都没留下…
展开
-
矩阵快速幂-poj3734
Language:DefaultBlocksTime Limit: 1000MS Memory Limit: 65536KTotal Submissions: 3714 Accepted: 1643DescriptionPanda has received an assignment of painti原创 2013-09-29 13:09:45 · 713 阅读 · 0 评论 -
矩阵快速幂+倍增spoj8059
E - Stocks PredictionTime Limit:8000MS Memory Limit:0KB 64bit IO Format:%lld & %lluSubmit Status Practice SPOJ AMR10EDescriptionThe department store where my family goes原创 2014-08-01 20:49:42 · 610 阅读 · 0 评论 -
2014 Multi-University Training Contest 9
Online JudgeOnline ExerciseOnline TeachingOnline ContestsExercise AuthorF.A.QHand In HandOnline AcmersForum | DiscussStatistical ChartsProblem ArchiveRealtime Judge Statu原创 2014-08-19 19:31:57 · 515 阅读 · 0 评论 -
扩展KMP+矩阵快速幂
扩展KMP:给出模板串A和子串B,长度分别为lenA和lenB,要求在线性时间内,对于每个A[i](0原创 2014-06-16 13:57:37 · 516 阅读 · 0 评论 -
矩阵快速幂(2014西安网络赛)+hdu5015
Online JudgeOnline ExerciseOnline TeachingOnline ContestsExercise AuthorF.A.QHand In HandOnline AcmersForum | DiscussStatistical ChartsProblem ArchiveRealtime Judge Statu原创 2014-09-14 19:56:22 · 587 阅读 · 0 评论 -
AC自动机+矩阵(构造字符串 好)hdu2243
Online JudgeOnline ExerciseOnline TeachingOnline ContestsExercise AuthorF.A.QHand In HandOnline AcmersForum | DiscussStatistical ChartsProblem ArchiveRealtime Judge Statu原创 2014-09-04 19:33:54 · 500 阅读 · 0 评论 -
矩阵快速幂(hdu5171GTY's birthday gift)
GTY's birthday giftTime Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Total Submission(s): 307 Accepted Submission(s): 111Problem DescriptionFFZ's birthd原创 2015-02-08 15:17:18 · 740 阅读 · 0 评论 -
Codeforces Round #307 (Div. 2)(二分||位运算+矩阵快速幂||分块)
B. ZgukistringZProfessor GukiZ doesn't accept string as they are. He likes to swap some letters in string to obtain a new one.GukiZ has strings a, b, and c. He wants to obtain stringk by原创 2015-06-14 21:36:32 · 623 阅读 · 0 评论 -
2015 Multi-University Training Contest 3(hdu 5316、5317、5319、5323、5325、5326)线段树+数学+yy+矩阵快速幂
MagicianProblem DescriptionFantasy magicians usually gain their ability through one of three usual methods: possessing it as an innate talent, gaining it through study and practice, or receiving it fro原创 2015-07-28 18:28:50 · 696 阅读 · 0 评论 -
矩阵倍增法uva11149
思路:a[1] + a[2] + a[3] + ... a[n]= (1+a[n/2])(a[1]+...+a[n/2])原创 2014-06-28 20:49:35 · 724 阅读 · 0 评论 -
矩阵快速幂uva10655
p=a+b; q=a*b; f[0]=2; f[1]=a+b; f[2]=a^2+b^2=(a+b)*(a+b)-2*a*b=(a+b)*f[1]-a*b*f[0]; ... f[n]=a^n+b^n=(a^(n-1)+b^(n-1))*(a+b)-a*b*(a^(n-2)+b^(n-2))=p*f[n-1]-q*f[n-2]原创 2014-06-27 14:58:20 · 470 阅读 · 0 评论 -
矩阵快速幂--poj3233
这个不是直接求矩阵快速幂,是求的和,但可以转化成快速幂。参见《挑战程序设计竞赛》。下面是代码:#include#include#include#include#include#include#include#include#include#includetypedef long long LL;using namespace std;int n,m,k;t原创 2013-09-29 13:40:39 · 608 阅读 · 0 评论 -
快速幂-poj3641
Language:DefaultPseudoprime numbersTime Limit: 1000MS Memory Limit: 65536KTotal Submissions: 5886 Accepted: 2345DescriptionFermat's theorem states that fo原创 2013-10-02 16:01:24 · 674 阅读 · 0 评论 -
快速幂-poj1995
Language:DefaultRaising Modulo NumbersTime Limit: 1000MS Memory Limit: 30000KTotal Submissions: 4103 Accepted: 2335DescriptionPeople are different. Some s原创 2013-10-02 16:18:24 · 1008 阅读 · 0 评论 -
Codeforces Round #196 (Div. 2)(c快速幂)
A - Puzzles#include#includeusing namespace std;const int maxn=60;const int INF=1000000000;int n,m,a[maxn],sum[maxn];int main(){ cin>>n>>m; for(int i=1;i<=m;i++) cin>>a[i];原创 2014-03-11 21:35:36 · 491 阅读 · 0 评论 -
矩阵快速幂+斐波纳契数列的立方和
http://acm.whu.edu.cn/land/problem/detail?problem_id=1540&contest_id=12斐波纳契数立方和公式但是除取模再除2不对,然后yy一下,对MOD的两倍取模再除2就对了#include#include#include#include#includeusing namespace std;typedef long原创 2014-03-30 17:10:09 · 874 阅读 · 0 评论 -
矩阵快速幂(特殊矩阵+优化)upc2604
构造出的矩阵:原创 2014-04-28 11:03:12 · 515 阅读 · 0 评论 -
矩阵快速幂uva10870
详见训练指南原创 2014-06-24 15:35:07 · 461 阅读 · 0 评论 -
矩阵快速幂+优化LA3704(uva1386)
根据题意可以构造出矩阵:A原创 2014-06-26 10:44:46 · 503 阅读 · 0 评论 -
2013 Multi-University Training Contest 9(hdu 4686 - 4691)dp(好)+矩阵快速幂+一般图匹配带花树+后缀数组
A - 1001DescriptionAn Arc of Dream is a curve defined by following function:AoD(n)=∑n−1i=0ai∗biAoD(n)=\sum_{i=0}^{n-1}a_i*b_iwhere a0=A0a_0 = A_0 ai=ai−1∗AX+AYa_i = a_{i-1}*AX+AY b0=B0b_0 = B_0 bi=原创 2015-08-27 14:38:32 · 507 阅读 · 0 评论