Given a 2D binary matrix filled with 0’s and 1’s, find the largest square containing only 1’s and return its area.
For example, given the following matrix:
1 0 1 0 0 1 0 1 1 1 1 1 1 1 1 1 0 0 1 0Return 4.
思路,遍历每一个1,然后向右向下扩展,看看能否构成正方形
public class MaximalSquare {
// 判断是否是正方形
public boolean ifSquare(int i, int j, int k, char[][] matrix) {
for(int a = j; a <= j + k; a++) {
if(matrix[i+k][a] != '1') return false;
}
for(int a = i; a <= i + k; a++) {
if(matrix[a][j+k] != '1') return false;
}
return true;
}
// 计算正方形的最大面积
public int getArea(int i, int j, char[][] matrix) {
int k = 1;
while((i + k < matrix.length) &&
(j + k < matrix[0].length) &&
ifSquare(i, j, k, matrix)) {
k++;
}
return k * k;
}
public int maximalSquare(char[][] matrix) {
int area = 0;
if(matrix[0].length == 0) return area;
int minLength = Math.min(matrix.length, matrix[0].length);
int maxArea = minLength * minLength;
for(int i = 0; i < matrix.length - 1; i++) {
for(int j = 0; j < matrix[0].length - 1; j++) {
if(matrix[i][j] == '1') {
area = Math.max(area, getArea(i, j, matrix));
if(area == maxArea) return area;
}
}
}
if(area == 0) {
for(int i = 0; i < matrix[0].length; i++) {
if(matrix[matrix.length-1][i] == '1') return 1;
}
for(int i = 0; i < matrix.length; i++) {
if(matrix[i][matrix[0].length-1] == '1') return 1;
}
}
return area;
}
public static void main(String[] args) {
// TODO Auto-generated method stub
MaximalSquare ms = new MaximalSquare();
char[][] matrix = {
{'1','0','1','0','0'},
{'1','0','0','1','1'},
{'1','1','0','1','1'},
{'1','0','1','1','1'}
};
int area = ms.maximalSquare(matrix);
System.out.println(area);
}
}
然后看了讨论区,好吧我SB,大神们用的DP,几行搞定
public int maximalSquareDp(char[][] matrix) {
if(matrix.length == 0 || matrix[0].length == 0) return 0;
int[][] dp = new int[matrix.length + 1][matrix[0].length + 1];
int max = 0;
for(int i = 1; i <= matrix.length; i++) {
for(int j = 1; j <= matrix[0].length; j++) {
if(matrix[i-1][j-1] == '1') {
dp[i][j] = Math.min(dp[i-1][j-1], Math.min(dp[i-1][j], dp[i][j-1])) + 1;
max = Math.max(max, dp[i][j]);
}
}
}
return max * max;
}
不过程序运行时间,就有点。。。