faster rcnn windows 下c++版本
参考了http://www.cnblogs.com/louyihang-loves-baiyan/p/5485955.html,和http://blog.youkuaiyun.com/oYangZi12/article/details/53290426。
上面两个分别是参考在linux下参考python版本的faster rcnn改写成c++版本的。不过其中用到了python的rpn layer,以及其中的 nms库,不能完全脱离python。
第二篇是改写的matlab版的faster rcnn。把rpn的操作在代码中间实现,中间有一层转接,感觉不太统一。
我主要是参考这两篇,用c++实现rpn层,并融入到caffe中,使用起来比较方便。其中主要流程参考的python版的faster rcnn。具体一些细节参考了http://blog.youkuaiyun.com/oYangZi12/article/details/53290426这里的内容。
环境:win8 + cuda8 +opencv2.4.11+微软的windows版本caffe。可在github上下载。
1.添加rpn层,直接上代码。
- rpn_layer.hpp
#ifndef CAFFE_RPN_LAYER_HPP_
#define CAFFE_RPN_LAYER_HPP_
#include <vector>
#include "caffe/blob.hpp"
#include "caffe/layer.hpp"
#include "caffe/proto/caffe.pb.h"
#include"opencv2/opencv.hpp"
#define mymax(a,b) ((a)>(b))?(a):(b)
#define mymin(a,b) ((a)>(b))?(b):(a)
namespace caffe {
/**
* @brief implement RPN layer for faster rcnn
*/
template <typename Dtype>
class RPNLayer : public Layer<Dtype> {
public:
explicit RPNLayer(const LayerParameter& param)
: Layer<Dtype>(param) {}
virtual void LayerSetUp(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top);
virtual void Reshape(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top){}
virtual inline const char* type() const { return "RPN"; }
protected:
virtual void Forward_cpu(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top);
virtual void Forward_gpu(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top);
virtual void Backward_cpu(const vector<Blob<Dtype>*>& top,
const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom){};
private:
int feat_stride_;
int base_size_;
vector<int> anchor_scales_;
vector<float> ratios_;
vector<vector<float>> gen_anchors_;
int anchors_[9][4];
int anchors_nums_;
int min_size_;
int pre_nms_topN_;
int post_nms_topN_;
float nms_thresh_;
int src_height_;
int src_width_;
float src_scale_;
private:
void generate_anchors();
vector<vector<float>> ratio_enum(vector<float>);
vector<float> whctrs(vector<float>);
vector<float> mkanchor(float w,float h,float x_ctr,float y_ctr);
vector<vector<float>> scale_enum(vector<float>);
cv::Mat proposal_local_anchor(int width, int height);
void filter_boxs(cv::Mat& pre_box, cv::Mat& score, vector<RPN::abox>& aboxes);
};
} // namespace caffe
#endif // CAFFE_RPN_LAYER_HPP_
- rpn_layer.cpp
#include <algorithm>
#include <vector>
#include "caffe/layers/rpn_layer.hpp"
#include "caffe/util/math_functions.hpp"
int debug = 0;
int tmp[9][4] = {
{ -83, -39, 100, 56 },
{ -175, -87, 192, 104 },
{ -359, -183, 376, 200 },
{ -55, -55, 72, 72 },
{ -119, -119, 136, 136 },
{ -247, -247, 264, 264 },
{ -35, -79, 52, 96 },
{ -79, -167, 96, 184 },
{ -167, -343, 184, 360 }
};
namespace caffe {
template <typename Dtype>
void RPNLayer<Dtype>::LayerSetUp(
const vector<Blob<Dtype>*>& bottom, const vector<Blob<Dtype>*>& top) {
feat_stride_ = layer_param_.rpn_param().feat_stride();
base_size_ = layer_param_.rpn_param().basesize();
min_size_ = layer_param_.rpn_param().boxminsize();
pre_nms_topN_ = layer_param_.rpn_param().per_nms_topn();
post_nms_topN_ = layer_param_.rpn_param().post_nms_topn();
nms_thresh_ = layer_param_.rpn_param().nms_thresh();
int scales_num = layer_param_.rpn_param().scale_size();
for (int i = 0; i < scales_num; ++i)
{
anchor_scales_.push_back(layer_param_.rpn_param().scale(i));
}
int ratios_num = layer_param_.rpn_param().ratio_size();
for (int i = 0; i < ratios_num; ++i)
{
ratios_.push_back(layer_param_.rpn_param().ratio(i));
}
generate_anchors();
//memcpy(anchors_, tmp, 9 * 4 * sizeof(int));
//anchors_nums_ = 9;
for (int i = 0; i<gen_anchors_.size(); ++i)
{
for (int j = 0; j<gen_anchors_[i].size(); ++j)
{
anchors_[i][j] = gen_anchors_[i][j];
if (debug)
LOG(INFO) << anchors_[i][j] << std::endl;;
}
}
anchors_nums_ = gen_anchors_.size();
top[0]->Reshape(