We are playing the Guess Game. The game is as follows:
I pick a number from 1 to n. You have to guess which number I picked.
Every time you guess wrong, I’ll tell you whether the number I picked is higher or lower.
However, when you guess a particular number x, and you guess wrong, you pay $x. You win the game when you guess the number I picked.
Example:
n = 10, I pick 8.
First round: You guess 5, I tell you that it's higher. You pay $5.
Second round: You guess 7, I tell you that it's higher. You pay $7.
Third round: You guess 9, I tell you that it's lower. You pay $9.
Game over. 8 is the number I picked.
You end up paying $5 + $7 + $9 = $21.
Given a particular n ≥ 1, find out how much money you need to have to guarantee a win.
这题要求我们在猜测数字y未知的情况下(1~n任意一个数),要我们在最坏情况下我们支付最少的钱。也就是说要考虑所有y的情况。
我们假定选择了一个错误的数x,(1<=x<=n && x!=y )那么就知道接下来应该从[1,x-1 ] 或者[x+1,n]中进行查找。 假如我们已经解决了[1,x-1] 和 [x+1,n]计算问题,我们将其表示为solve(L,x-1) 和solve(x+1,n),那么我们应该选择max(solve(L,x-1),solve(x+1,n)) 这样就是求最坏情况下的损失。总的损失就是 f(x) = x + max(solve(L,x-1),solve(x+1,n))
那么将x从1~n进行遍历,取使得 f(x) 达到最小,来确定最坏情况下最小的损失
int dfs_help(vector<vector<int>>& dp, int left, int right){
if (left >= right)return 0;
if (dp[left][right])return dp[left][right];
int res = INT_MAX;
for (int i = left; i <= right; i++){
int temp = i + max(dfs_help(dp, left, i - 1), dfs_help(dp, i + 1, right));
res = min(res, temp);
}
dp[left][right] = res;
return res;
}
int getMoneyAmount(int n) {
vector<vector<int>> dp(n + 1, vector<int>(n + 1, 0));
dfs_help(dp, 1, n);
return dp[1][n];
}