375. Guess Number Higher or Lower II dynamic programming

本文介绍了一种猜数字游戏的最优策略算法。该算法通过动态规划的方法,在最坏的情况下找到支付金额最少的策略。文章详细解释了算法思路,并提供了具体的实现代码。

We are playing the Guess Game. The game is as follows:

I pick a number from 1 to n. You have to guess which number I picked.

Every time you guess wrong, I’ll tell you whether the number I picked is higher or lower.

However, when you guess a particular number x, and you guess wrong, you pay $x. You win the game when you guess the number I picked.

Example:

n = 10, I pick 8.

First round:  You guess 5, I tell you that it's higher. You pay $5.
Second round: You guess 7, I tell you that it's higher. You pay $7.
Third round:  You guess 9, I tell you that it's lower. You pay $9.

Game over. 8 is the number I picked.

You end up paying $5 + $7 + $9 = $21.

Given a particular n ≥ 1, find out how much money you need to have to guarantee a win.

这题要求我们在猜测数字y未知的情况下(1~n任意一个数),要我们在最坏情况下我们支付最少的钱。也就是说要考虑所有y的情况。

我们假定选择了一个错误的数x,(1<=x<=n && x!=y )那么就知道接下来应该从[1,x-1 ] 或者[x+1,n]中进行查找。 假如我们已经解决了[1,x-1] 和 [x+1,n]计算问题,我们将其表示为solve(L,x-1) 和solve(x+1,n),那么我们应该选择max(solve(L,x-1),solve(x+1,n)) 这样就是求最坏情况下的损失。总的损失就是 f(x) = x + max(solve(L,x-1),solve(x+1,n))

那么将x从1~n进行遍历,取使得 f(x) 达到最小,来确定最坏情况下最小的损失

int dfs_help(vector<vector<int>>& dp, int left, int right){
    if (left >= right)return 0;
    if (dp[left][right])return dp[left][right];

    int res = INT_MAX;
    for (int i = left; i <= right; i++){
        int temp = i + max(dfs_help(dp, left, i - 1), dfs_help(dp, i + 1, right));
        res = min(res, temp);
    }
    dp[left][right] = res;
    return res;
}

int getMoneyAmount(int n) {
    vector<vector<int>> dp(n + 1, vector<int>(n + 1, 0));
    dfs_help(dp, 1, n);
    return dp[1][n];
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值