375. Guess Number Higher or Lower II**

本文探讨了一种猜数字游戏的最佳策略,目标是最小化可能的最大损失。通过动态规划的方法,从递归和自底向上两种角度实现了算法,并提供了具体实现代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

We are playing the Guess Game. The game is as follows:

I pick a number from 1 to n. You have to guess which number I picked.

Every time you guess wrong, I'll tell you whether the number I picked is higher or lower.

However, when you guess a particular number x, and you guess wrong, you pay $x. You win the game when you guess the number I picked.

Example:

n = 10, I pick 8.

First round:  You guess 5, I tell you that it's higher. You pay $5.
Second round: You guess 7, I tell you that it's higher. You pay $7.
Third round:  You guess 9, I tell you that it's lower. You pay $9.

Game over. 8 is the number I picked.

You end up paying $5 + $7 + $9 = $21.

Given a particular n ≥ 1, find out how much money you need to have to guarantee a win.

Hint:

  1. The best strategy to play the game is to minimize the maximum loss you could possibly face. Another strategy is to minimize the expected loss. Here, we are interested in thefirst scenario.
  2. Take a small example (n = 3). What do you end up paying in the worst case?
  3. Check out this article if you're still stuck.
  4. The purely recursive implementation of minimax would be worthless for even a small n. You MUST use dynamic programming.
  5. As a follow-up, how would you modify your code to solve the problem of minimizing the expected loss, instead of the worst-case loss?
dynamic programming:

up-bottom:

public class Solution {
    public int getMoneyAmount(int n) {
        int[][] table = new int[n+1][n+1];
        return dp(table,1,n);
    }
    private int dp(int[][] table, int s, int e){
        if(s>=e) return 0;
        if(table[s][e]!=0) return table[s][e];
        int res =  Integer.MAX_VALUE;
        for(int x=s;x<=e;x++){
            int temp = x+Math.max(dp(table,s,x-1), dp(table,x+1,e));
            res= Math.min(temp,res);
        }
        table[s][e]=res;
        return res;
    }
}
bottom-up:
public class Solution {
    public int getMoneyAmount(int n) {
        int[][] table = new int[n+1][n+1];
        for(int j=2;j<=n;j++){
            for(int i=j-1;i>=0;i--){
                int globalmin = Integer.MAX_VALUE;
                for(int k=i+1;k<j;k++){
                    int temp = k+Math.max(table[i][k-1],table[k+1][j]);
                    globalmin=Math.min(globalmin, temp);
                }
                table[i][j]=i+1==j?i:globalmin;
            }
            
        }
        return table[1][n];
    }
}
总结:关键是拆分问题。


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值