1. transformer 架构
Transformer改进了RNN最被人诟病的训练慢的缺点,利用self-attention机制实现快速并行。左半部分是 encoder 右半部分是 decoder。
- Encoder: 由N=6个相同的layers组成, 每一层包含两个sub-layers. 第一个sub-layer 就是多头注意力层(multi-head attention layer)然后是一个简单的全连接层。 其中每个sub-layer都加了residual connection(残差连接)和normalisation(归一化)。
- Decoder: 由N=6个相同的Layer组成,但这里的layer和encoder不一样, 这里的layer包含了三个sub-layers, 其中有一个self-attention layer, encoder-decoder attention layer 最后是一个全连接层。前两个sub-layer 都是基于multi-head attention layer。这里有个特别点就是masking, masking 的作用就是防止在训练的时候 使用未来的输出的单词。比如训练时,第一个单词是不能参考第二个单词的生成结果的。Masking就会把这个信息变成0,用来保证预测位置 i 的信息只能基于比 i 小的输出。
class EncoderLayer(nn.Module):
"Encoder is made up of self-attn an